
 

 

On Rejection 
...for centuries of an elegant geometric language 

Gary Harper 
 

My paper, Meaning-Imposers versus Meaning-Derivers, was first rejected by the esteemed 
American Journal of Physics in January, 2008. “Read our editorial policy” the editor wrote, “our 
readers are not interested in a new interpretation of Geometric Algebra.” (Quoting from memory, 
since I had rejected his rejection letter.) New interpretation, sir?!—the whole point of the paper 
was to avoid imposing an interpretation, thereby deriving “the keystone of the entire structure of 
mathematics” to echo the hero of the paper. 

The editor had the grace to say that he considered himself an associate member of my “orga-
nization” (his quotes, referring to my Institute for Nagging Doubt organization, unquoted, no less 
serious than the Rejecta Mathematica organization, unquoted.) I happen to admire this particular 
editor, enough not to embarrass him by name, and would be proud to have him as a full member, 
if he would actually read my paper. (Okay, he had a point:  it contained mostly mathematics, not 
physics, even tho it did have torque in it, and linear force, angular velocity, not to mention bal-
ance point.)  

The second rejection occurred in February from the august American Mathematical Monthly. 
This time my paper received a good editorial review, as I know from the kind rejection letter and 
from concurrent hits on my website where the ideas are leisurely developed. “I have reviewed 
your submission in detail with our editorial board” the rejector wrote, “and we have reluctantly 
concluded that it does not have broad appeal to our diverse audience. We have only a limited 
amount of space available each month, and are forced by the enormous volume of submission to 
reject many fine papers.” (Quoting from memory.) 

Where did I go wrong? Perhaps I should not have called professional mathematicians, in the 
first paragraph, “meaning-imposers” who generate “inconsistencies and confusions”. Perhaps I 
should not have asked “Where did I go wrong?” on page 61; or, “Have I made another blunder?” 
on page 62. Perhaps I should not have given equal time to the blunders of my Geometric Algebra 
heroes, especially the living ones; or should not have written, “points have not yet become full-
fledged geometric objects, like scalars!” on page 68. Maybe I used too many exclamation marks. 

Please tell me, sirs, what to change because this paper is dead serious. It is an attempt to in-
troduce the reader to the very expressive geometric language that germinated in the fertile young 
mind of Hermann Gunther Grassmann in the early 1800s. Altho we have recently understood a 
good half of his language, the other half, which is just as good—or perhaps better since it is the 
foundation—remains unknown because it seems strange. But it really isn’t, what really is strange 
is the perverse historical trajectory that makes it seem strange. 

Just by reading this paper you have no hope of becoming articulate with Grassmann’s full 
language. For that you will of course have to also read his two books and play with the ideas. 
And good luck with that—it took me a good ten years to really understand his fundamentals, and 
then another good ten years to make them cohere in my mind. So, if this paper succeeds in its 
purpose, you will have twenty good years in front of you. 
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Meaning-Imposers versus Meaning-Derivers 
 

Gary Harper 
 
The Geometric Algebra community has evolved into a large segment of meaning-imposers 

and a tiny segment of meaning-derivers. Meaning-imposers begin with an abstract mathematical 
formalism, viewed as a gift from heaven regardless of how it had actually been achieved histori-
cally; and then impose on it whatever geometric meaning seems convenient or appropriate. Such 
meaning, as many readers know, is called an interpretation informally, or a model formally. 
Meaning-derivers, as few readers may know, begin with geometric meaning, viewed as the 
primitive starting point, and then derive everything else from that, including the mathematical 
formalism itself. 

Meaning imposition has been undeniably fruitful, but it generates subtle inconsistencies and 
confusions that have stalled us in the purely free Geometric Algebra. Hence we cannot articulate 
bound things, like points for example, except by imposing clever but clumsy artifices on the free 
language from outside it. Nearly two centuries ago Hermann Grassmann showed how to articu-
late bound things from inside the language,1 but he suffered from the distinct inconsistencies and 
confusions of a creator who has not had time to polish his creation. By starting over and carefully 
re-deriving his full language from seminal geometric concepts, we can dispel the fog and gain a 
more expressive language. 

Here are the seminal ideas:  (1) the concept of geometric points, (2) what it means to summa-
rize points, and (3) what it means to extend something from a point, to wit:  (1*) Points have 
fixed distances among themselves. (2*) Summarizing points is like summarizing anything:  order 
doesn’t matter; grouping doesn’t matter; a point summarized with Nothing is just the point itself. 
Finally, Grassmann’s gem, somewhat polished: (3*) extending something from a point sweeps it 
from there directly back to its original position, filling in as it returns, which increments dimen-
sion. Hence, to begin at the beginning, extending a point from another point produces a directed 
line segment that has a dimension one higher than that of a point. 

(So, clearly, Grassmann was the founding meaning-deriver; but he fell under the seductive 
spell of mathematical abstraction, and became a resolute meaning-remover. Since geometric 
meaning had already generated his symbolism, Grassmann never could have become a bona fide 
meaning-imposer. Such persons arrived later, after Grassmann’s resolutely abstract symbolism 
had been cleaned up and unified by William Kingdon Clifford.2) 

At this juncture, meaning-imposers will ask what the three primitive concepts are, if not pre-
liminary meaning imposition. Point well taken—we meaning-derivers are closet meaning-
imposers; but we are timid ones who impose meaning only at the very beginning, before any 
symbolism has been established, and not just when it seems convenient or appropriate. If mean-
ing ever comes to seem overwhelmingly convenient or appropriate, we go right back to the closet 
and start all over again, convinced that we, in our naivety, have neglected something important 
that will change the symbolism. 
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Well then, a meaning-imposer may say, I, the meaning-deriver, will shortly need to return to 
the closet if I expect to have free vectors in my language. There is just no way that roving di-
rected line segments can ever be derived from fixed points!—the roving idea has to be imposed. 
Again, point well taken—it does seem implausible that securely bound things, unassisted, could 
ever produce something free. But let us just see if it might be true. 

The primitive idea of point summary immediately generates some symbolism; and it looks 
exactly like the rules for elementary-school addition, applied unfamiliarly to points, with zero 
taking the role of Nothing. But it also looks like the rules for logical or, again applied unfamil-
iarly to points, with false taking the role of Nothing. So, which will it be? 

One can’t be sure immediately because, as mentioned, point summary is still unfamiliar, even 
these several centuries after Grassmann (and Mobius) introduced it. Indeed, it is commonly un-
derstood to be, for example, “non-geometric”; and it “makes no intrinsic sense”.3 Here is where 
an eager young meaning-deriver will probably have to return to the closet and start all over again 
because she, in her naivety, will decide that summarizing two points, a and b say, produces the 
midpoint, m, between them. What could be more natural?—this immediately establishes sum-
mary indifference to order, the commutative law. But it also implies that summarizing point a, 
say, with itself simply reproduces point a. This is clearly a kind of geometric logic, devoid of 
numbers; not arithmetic, wallowing in numbers. 

With that satisfying thought, the young meaning-deriver begins to investigate how this relates 
to the primitive idea of fixed points. Whoa! That idea applied to the midpoint idea would invali-
date summary indifference to grouping,4 the associative law. Back to the closet: midpoint m 
summarizes two points, so it should have twice the significance of either one of them alone. So 
this is not geometric logic, it is geometric addition, and the symbolism now becomes a + b = 2m 
and a + a = 2a, rather than naked a, as before. This new symbolism now provides enough infor-
mation to validate the associative law, and all the other laws of summary. (Terminology:  m is a 
location; 2 is its weight, which is a kind of magnitude like length, area, and volume. The weight 
of a sum point is the sum of its summand weights. A naked location like a is called a simple 
point, or a unit point since a = 1a.) 

To summarize, points must be weighted for the first two primitive concepts to be validated to-
gether—points must wallow in numbers. This is your very first derived meaning; and it may ap-
pear insignificant until you consider that it seems manifestly contrary to hoary Euclidean con-
vention, which denies points “magnitude”.5 In retrospect, it is clear that this ancient convention 
must be misleading, at best:  distances among points is all about numbers simply because dis-
tance is an ordered continuum; and summary of points should somehow cause points to inherit 
that continuum. 

Your second derived meaning may not seem so insignificant:  a sum point always lies on the 
line thru its two summands. This arises directly from previous equation a + b = 2m, where m is 
still the midpoint (to keep the commutative law valid); hence it necessarily lies on the line thru a 
and b, tho it now has a weight of 2. You can use this equation to approximate any sum of two 
weighted points as closely as you wish by adjusting weights to express midpoints of midpoints, 
iterated; and such an approximation becomes exact in the limit. Midpoints of midpoints necessar-
ily generate a result lying on the line thru the two summands. 
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What other derived concepts do the first two primitive concepts mandate? When you play 
with these concepts as Grassmann did,6 you soon discover that they require a sum of two 
weighted points, aa + bb say (having scalar weights a and b), to obey this simple rule: 

weight–distance(a) = weight–distance(b) 
This means that the weight of a times its distance to the sum point equals the weight of b 

times its distance to the sum point. This is your third derived meaning, and it is quite significant 
because it tells exactly how summary of points causes them to inherit the distance continuum. 
The rule is just as valid for negative weights as for positive ones provided you carefully distin-
guish signs as follows:  give a summand-to-sum distance that crosses the other summand the op-
posite sign to a distance that doesn’t. 

The weight–distance rule induces the following intuitive concept of point summary:  a sum 
point is physically a balance point so it always lies nearer the heavier summand (the one with 
greatest absolute value). When this idea is applied to a sum of points having opposite signs, the 
opposite-sign distinction kicks in, requiring the sum point to lie on the line from the lighter point 
(in absolute value) thru and beyond the heavier point. Which prepares you for... 

Some magic:  what is a – b? 
Whatever the location of this sum, call it l, its weight, 1 – 1, is 0; so this sum has this form: 0l. 

Since anything multiplied by zero is just zero, the sum a – b is clearly zero. Right? 
There is a quick way to test this:  give the entire sum a non-presupposing name, “v” say, 

meaning that v = a – b (“l” was presupposing since it was a location).  Now see if indifferent v 
acts like zero:  Add v to the second nearest thing in sight, namely point b. When you apply the 
primitive rules of point summary, you get point a. Hmmm... Okay then, subtract v from the 
nearest thing in sight, point a. You get point b. 

That is not how zero acts!—zero doesn’t change things when it is added or subtracted with 
them. This v thing is changing points under addition and subtraction; in fact it is moving them 
around. Where did I go wrong reasoning that a – b must be zero? I went wrong in assuming 
there was some location, “l” I called it, for its zero weight to multiply. There’s not. The point 
sum a – b really has no location. It really has no weight. And yet it is not zero. It is truly bizarre 
to the modern mind, which has come to shun point summary, altho many minds born in the 
1800s were comfortable with it. Let’s reacquaint ourselves with their old friend: 

You can sneak up on a – b by approximating it with non-zero weights that approach zero. For 
example, start by giving a a weight of 1/2, and then successively halve a’s actual-minus-
approximate weight like this: 1/2, 3/4, 7/8, 15/16, etc. This will successively halve the approxi-
mate sum weight. At each weight halving, the weight–distance rule will scoot the approximate 
sum location twice as far away along the line thru a and b. 

This removes some of the mystery:  as the sum point weight goes to zero, its location goes to 
infinity, in lock-step; so the diminishing weight and the receding location effectively cancel each 
other. Which is why a – b is not zero:  it is actually a peculiar kind of zero times infinity. The sat-
isfying conclusion is that a – b is a point at infinity. Right? 

This is certainly a modern concept, quite familiar from Projective Geometry, which is redo-
lent with classically imposed points at infinity. But I just said that the result of a – b really has no 
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location. How can it not have a location if it resides at infinity? Have I made another blunder? Or 
is this just an innocuous problem with our language? 

There is an easy way to test this:  start a with a weight of 1 1/2 (rather than 1/2) and then 
sneak up on a – b, as before. As before, halving the approximate sum weight scoots the approxi-
mate sum location twice as far away. But it does so in the opposite direction. This is again man-
dated by the weight–distance rule, which carefully notices, during the approximation, which 
summand is lighter, and which is heavier. In consequence, since both approximations approach a 
– b in the limit, it appears that this sum is infinitely distant from itself! 

However, if this sum really has no location, then the problem disappears because such a sum 
cannot be any distance from anything, let alone from itself. But if it “resides at infinity” then 
there is a problem with our language, and it definitely is not innocuous. It generates the subtle 
confusion that Geometric Algebra directly articulates “points at infinity”. The full Geometric Al-
gebra does not. It cannot. It can articulate only finite representations. Moreover, such a finite 
representation cannot be a single non-decomposable thing—it is intrinsically composite. (Fore-
shadowing query: Indifferent v therefore cannot be a sum, as naively assumed, so what is it?) To 
peek ahead, there is no “at” at infinity; rather there are “ats” at finity.  

You have just seen that v, under addition and subtraction, can move the two points that com-
pose it, a and b. Look closely:  from elementary-school rules of addition, v + b = (a – b) + b = a 
+ (b – b) = a + 0 = a. So point b has effectively been carried from one end of v to the other end. 
And the reason is clear:  under addition, b annihilates one of v’s endpoints, poof, leaving the 
other endpoint as residue.  It seems natural to call the poofing endpoint the tail, the residual end-
point the head; and say that v + b carries point b from v’s tail to v’s head. Altho this nomencla-
ture seems natural, One wonders how generally useful it might be since this obviously works 
only because v is being added with a copy of its own endpoint. Right?—v doesn’t carry other 
points around under addition, does it? 

Well, let’s just see: given an arbitrary point r, what is v + r? To ask this question in the fresh 
young symbolism, solve this equation:  v + r = x, where x is unknown, utterly unknown as indi-
cated by its generic font. 

What is going to happen next is so important to your understanding of the full Geometric Al-
gebra that I am going to present it in complete detail, with powerful emphasis on the crucial part. 
If you hope to acquire a more expressive geometric language then you will have to wrestle with 
this until you understand it completely. How will you know whether you’ve understood it? If my 
experience is any indication, you will become amazed. If you don’t, then you may be suffering 
from traditional meaning-imposing habits. To help overcome that, remember that we are articu-
lating fixed points, and nothing else. We began bound; we are bound now; and it looks like we 
will stay bound because we are too timid to cavalierly impose any kind of geometric freedom. If 
freedom arises, it will be entirely derived from things that are entirely bound. Who would ever 
bet on that?  

Okay, expand equation v + r = x, giving a – b + r = x. Now pull the purely-positive-equation 
trick by putting b on x’s side of the equation: a + r = b + x. The left side has the sum of two sim-
ple points. The right side has the sum of a simple point and something, namely x. For the right 
side to equal the left side, this something must also be a simple point (do the weight calculation), 
so denote it in point font, x. Hence, utterly unknown x has become somewhat known simple 
point x. So, apparently v really does move arbitrary points around since that question will be an-

G. Harper Meaning-Imposers versus Meaning-Derivers

Rejecta Mathematica Vol. 1, No. 1, July 2009

This work is published under the Creative Commons Attribution-NonCommercial License. http://creativecommons.org/licenses/by-nc/2.5/legalcode

62

http://math.rejecta.org
http://creativecommons.org/licenses/by-nc/2.5/legalcode


 

 

swered by x’s eventual location. To find this location, we need to visualize the transformed equa-
tion: a + r = b + x. 

This equation involves addition, equality and simple points. These are the elements that have 
to be displayed geometrically. Addition of two points can be indicated by a dashed line connect-
ing them. The equals sign is too imprecise about location to be useful on a geometric figure. In-
stead, a skinny curved line with tiny arrows on each end will be used. Call this the geometric 
equals sign. Its two tiny heads will just touch the things that are equal. Simple points are so use-
ful that they should be distinguished from generic weighted points; let’s use a little triangle for 
them and a little dot for generic points. 

With these conventions, the transformed equation becomes geometrically obvious:  two little 
triangles connected by a dashed line denote addition of two simple points, so their sum, 2m, lies 
at their midpoint. There are two of these additions connected by equality, so they share the same 
midpoint sum. Here is a picture: 

 
Visualizing simple point sums. 

This kind of figure has seminal importance so let’s dignify it as an X-diagram. It answers the 
question about v’s ability to move points other than the two it comprises:  x is the solution to the 
original equation v + r = x. In words, v added to r moves that over to x. Since the location of r is 
entirely arbitrary, v moves any simple point in a similar way. Here is how to be sure you under-
stand this completely: 

Sketch weighted points a and –b. Connect them with a dashed line to indicate that they are be-
ing added together. This makes a – b a kind of cohesive bundle (hint), deserving its own name, v; 
and deserving more intimate notation: a–b. Have a friend sketch a point r somewhere—
anywhere. Now add your little bundle to it like this:  Wham!—equate the summary result to x so 
you have a concrete result to work with. Bang!—unbundle v and swap –b to x’s side of the equa-
tion (by erasing the dashed-line addition and the minus sign). This gives two simple point sums 
that equal each other. Pow!—do the sum you immediately know, namely a + r. This gives mid-
point 2m, which is also the sum you didn’t immediately know, namely b + x. So now you know 
it too, and you therefore know where x is. (For graphical precision, you should, of course, sketch 
the dashed-line additions as you do each sum, thereby making them neatly Xd together right in 
the middle.) Next, have your assistant sketch a different point somewhere, anywhere, pow! An-
other: pow!... If you can do ten distinct v+r sums in a row, correctly, without batting an eye, then 
you understand this. Please understand this—it is really quite simple; but the main reason we 
still suffer from geometric inconsistencies and confusion is nearly universal chronic ignorance of 
its various unexpected consequences. 

Having understood this, you may think that it does not seem amazing. But it might seem sur-
prising, or at least peculiar:  Recall that v was able to move a copy of its own endpoint under ad-
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dition by poofing it (to speak technically), leaving the other endpoint as residue. But here v is 
moving an arbitrary point under addition by a kind of scissoring mechanism, the X-diagram, in 
which nothing is being poofed. And yet... 

And yet v is moving point r exactly as tho v could move parallel to itself to place its tail over 
r, and then do the addition; in which case v would be poofing, exactly as before. Dust off your 
high-school geometry and gaze at the X scissoring mechanism until you understand this in your 
bones. (You see the abm triangle, congruent to the rxm triangle, don’t you?—take it from there.) 
To help understand this, here is the previous figure, exactly as before, geometrically, with the 
exact same equation, except that it has been left untransformed: 

 
A direct visualization of  r + v = x. 

This figure may not seem as geometrically obvious as the X-diagram. Nevertheless, it directly 
represents the same equation, left untransformed. To understand that, superimpose the previous 
X-diagram on top of it—corresponding points will match exactly. The X-diagram should seem 
obvious if you understand how simple points add. When you understand how v acts, this figure 
should also seem obvious. Notice that the sum 2m has disappeared from it because this point was 
not present in the original equation—it served as an illuminating centered pivot point in the 
transformed equation that you may now discard as a conceptual crutch. Notice also that, altho 
simple points are still depicted with tiny triangles, a negative simple point has been depicted with 
a tiny square. This makes it easy to determine the head and tail of v, as you see. Speaking of v, 
let me say again, for emphasis:  in this figure it looks as tho v is able to move parallel to itself to 
engage the poof method of addition. If so, any puzzlement about the figure would evaporate. 

It turns out that v actually is able to move parallel to itself; and a different transformation of 
the original equation will directly display this. In this new equation, don’t unbundle v. Instead 
move r over to the x side of the equation: v = x – r. Kazaam!—the right side of this equation has 
exactly the same form as v does, namely a simple point minus another simple point. Here is the 
figure representing this re-transformed equation: 

 
geometric magic 
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To see that it communicates the same information, superimpose the X-diagram on top of it—
corresponding points will again match exactly.  In consequence, a–b equals x–r. Hence, because 
the location of r is completely arbitrary, v, in effect, is able to move anywhere parallel to itself. 
In short, geometric freedom has been entirely derived from things that are entirely bound. That, I 
submit, is amazing. Grassmann’s protracted account of discovery seems to indicate that he found 
it amazing too.7 

Apparently the strange un-point-like point v has a fixed separation and a fixed direction but 
no particular location. But exactly what has separation-and-direction? And exactly what has no 
location? Are these the same thing? No:  the summands of v, considered as a separated–directed 
whole, can reside anywhere because the sum itself resides nowhere. 

To be precise:  v is a peculiar addition of oppositely weighted points whose sum loses, in 
lock-step, both magnitude and location, which, in the limit, makes its summands gain both 
separation and direction. It’s magic—without magic, to borrow John Wheeler’s aphorism. This 
raises some... 

Perplexities 
• Roving v acts much like a conventional vector (so the name “v” was deviously presup-

posing), except that it is not a line segment. Right?... 
• I mean, addition of weighted points always produces another point, at least formally, 

doesn’t it?—addition never changes dimension, does it? (Everyone knows that a point is 
zero-dimensional, a line segment one-dimensional.) 

• Speaking of changing things, the previous magic changed focus in the limit from a sum 
to its summands. Is this distinction important formally? 

• For example, is this what makes v intrinsically composite? 
• Is that why the full Geometric Algebra always articulates things at finity? 
• If so, do the conventional rules of Geometric Algebra make the sum–summand distinc-

tion properly? 
• If not, should they? Could they? 
Some of these perplexities may be superfluous. After all, extending a point from another point 

produces a directed line segment, which would be exactly a conventional vector if it turns out to 
be as mobile, and as mobilizing, as v turned out to be; and that now seems likely, doesn’t it? But 
that would raise another perplexity:  what exactly, then, is the distinction between subtracting a 
point from another point, and extending that point from the other point? To find out requires 
specifying the... 

Relationship between extension and addition 
The relationship, like all healthy ones, is built on mutual respect:  (4a) Addition respects ex-

tension enough not to change the properties that extension hath wrought. (4b) Extension respects 
addition enough to treat addition’s result as a genuine summary of its arguments.  These new 
concepts require a trip back to the closet to start all over again. Fortunately they merely augment 
the first three concepts, so, once we understand how they change the symbolism, we can just pick 
up where we left off. 
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Addition does not change the properties that extension hath wrought. This is just an unfamil-
iar specialization of the concept of summary. One naturally expects a summary not to change 
any properties of what it summarizes; to do otherwise would make a mockery of the concept. 
Refusal to change properties is really more central to the idea of summary than indifference to 
order, or indifference to grouping; but it remains unfamiliar because of our present narrow expe-
rience with summary of homogeneous things, ordinary numbers. Extension generates inhomoge-
neous things, things having different dimensions; and that is the property that addition does not 
change. Which removes one perplexity:  (4a*) Addition does not change dimension. (This is a 
semantic formality that is surprisingly tricky to symbolize properly, as you shall see.) 

And that, in turn, begins to remove the perplexity about v being intrinsically composite. When 
addition is presented with summands having different dimensions, it can’t summarize them to 
anything simpler because it can’t give them a common dimension. Hence, it merely bundles 
them into a summary list, with the plus sign serving as conjoining punctuation. This bundle is 
intrinsically composite because (1) its contents cannot reduce to just one thing, and (2) it can al-
ways be decomposed and re-bundled differently, using addition’s associative law. 

It is obvious to any student of Geometric Algebra that a sum of things having different dimen-
sions is intrinsically composite:  these things are obviously too distinct to merge in summary. But 
it is almost always a surprise that sometimes—oftentimes—even things of the same dimension 
are that distinct. This surprise can be blamed on a historical mishap:  we have become stuck in 
the purely free Geometric Algebra. In that language, all readily imaginable things of the same 
dimension can always sum to a single thing simply because imaginable space just happens to be 
a perfect cage for free things. 

If you go just beyond imaginable space, however, you bump into free things of the same di-
mension that are too distinct to sum to a single thing. Free bivectors in free 4-space, for example, 
are that distinct if the planes thru them intersect in just one point. This possibility arises naturally 
from the extra dimension (and has obvious expression in the full language), but it seems so bi-
zarre to most students that they dismiss the idea of intrinsically composite same-dimensioned 
sums as too esoteric to worry about. Even Grassmann may have had that attitude during his early 
“geometry” phase,8 as he dismissively called it. 

If he did, he certainly revised his opinion after he encountered bound things late in his explo-
rations. Grassmann began his language like all students today begin it, purely free; and perhaps 
humankind’s roving spatial experience makes this approach natural. But his incredible curiosity 
and creativity eventually introduced him to bound points via free vectors!7 This is exactly back-
ward logically; and it is truly, astonishingly, extraordinary as witnessed by the fact that in nearly 
two centuries of ignorance about Grassmann’s bound language, no one else has made the trip 
backward and installed points within the formalities like Grassmann did. When he did that, he 
quickly discovered that there are readily imaginable same-dimensioned bound things that are too 
distinct to sum to a single thing.9 They are not esoteric at all—in fact they are more common than 
same-dimensioned things that can sum to a single thing. (To peek ahead, they aren’t simple 
points, are they?—they always sum to a single thing.) To really understand this, you need to 
know more about extension. 

And that requires notation. Extension had initially been denoted in about as many different 
ways as there were authors writing about it—Grassmann himself used several distinct nota-
tions—but it has recently stabilized on Cartan’s wedge, ∧, meaning extended to. Unfortunately, 
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that has two serious problems in the full Geometric Algebra, which must, above all, articulate 
points well since they are the generative elements: 

(1) a∧b would generate a directed line segment with tail at a, head at b; which is opposite to 
a–b, which generates separated–directed points with tail at b, head at a. This inconsistency 
would be confusing of course, but the worst of it is that these two expressions have an elegant 
relationship (coming up), fundamental to the full language, that would be obscured if they did 
not have their heads and tails in the same order. This really begs for extension to be from rather 
than to, which somewhat polishes Grassmann’s gem. Consistency with point subtraction 
prompted Hamilton to adopt a similar convention.10 

(2) From item 1, extension is clearly directed, so it really should have a directed symbol, 
rather than one with bilateral symmetry like ∧. How about ? This clearly indicates from, and its 
filled-in form indicates extension. Hence ab is “a extended from b”, like a–b is “a subtracted 
from b”; and these two expressions have their ducks aligned. As a bonus, this distinct notation 
should help clarify the transition from the conventional purely free language to Grassmann’s full 
language for those readers crossing that bridge.  

With notation established, we can pick up where we left off:  Extension respects addition 
enough to treat addition’s result as a genuine summary of its arguments.  Which is to say, ex-
tension with a point is indifferent to whether it operates on addition’s arguments, or on addition’s 
result. Here is how this augments the symbolism: 

(4b.1*)  (Ac) + (Bc) = (A + B)c      and  (cA) + (cB) = c(A + B) 
Notice that there are two rules, commuted, because extension is directed, so extending from c 

on the left is generally different from extending to c (reading backward) on the right. Mathemati-
cians call these rules distributive laws, which focuses on syntax. This may seem appropriate 
since these rules are part of the syntax, as explained shortly; but they, like all rules in this paper, 
were motivated by primitive semantics, so this paper will call them extension’s respect for sum-
mary to emphasize their meaningful origin. 

When you apply these rules multiple times to scalar-weighted points via a valid limiting 
process you get, for scalar c: 

(4b.2*) c(ab) = (ca)b = a(cb) 
This will be called extension’s respect for multiple summary, again focusing on geometric 

meaning (and it can also be generalized to generic A and B). To indicate that extension has both 
kinds of respect, let’s say that it has strong respect for summary. Strong respect for summary 
makes the language versatile and expressive by decoupling extension from addition, and from 
addition’s infinitesimal multiple limit, scalar multiplication. This prepares you to start... 

Extending things 
Here is where timid meaning derivation begins to really pay off. A meaning-deriver has to 

start with the primitive concept for extension, the third concept, which requires extension from a 
point to increment dimension. That, in turn, requires establishing the primitive dimension, the 
dimension of a point. 

Meaning-imposers long ago agreed that a point is zero-dimensional, but that poses a serious 
conundrum for meaning-derivers:  Since extension from a point increments dimension, shouldn’t 
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the dimension of a point therefore establish the dimensional increment that gives everything else 
a dimension? This is simply a natural requirement for the dimension of an extension result to be 
the sum of its argument dimensions. If so, then points must be one-dimensional. This would im-
ply that line segments are really two-dimensional; patches of plane are three-dimensional; and so 
on. This seems silly—we have known for millennia that lines are one-dimensional, planes are 
two-dimensional, and on up. Nevertheless, in a last-gasp nag, the meaning-deriver asks, what 
about on down? 

If points were one-dimensional, then scalars would be zero-dimensional. Suddenly it is the 
meaning-imposers who have a serious conundrum:  They have recently reached universal agree-
ment that scalars are indeed zero-dimensional. If points were zero-dimensional, as also agreed, 
then, by dimensional decrement scalars would have a dimension of minus one. (Unless points 
are scalars. Well, are they? If meaning-imposing habits incline you to think so, please ponder the 
elegant relationship (coming up) between points and scalars before deciding.) Here you have an 
example of the inconsistency that meaning imposition generates. Exposed like this, zero is not 
minus one, it doesn’t seem subtle, does it? 

Why haven’t we noticed this problem for the last several thousand years? First, only recently 
have scalars acquired a dimension, when they were belatedly recognized to be full-fledged geo-
metric objects like lines, planes and so on. When scalars interacted with geometric things, it was 
seen that they must have a dimension of zero because they do not change the dimension of what 
they multiply. Strangely, second, points have yet to be emancipated like that—points have not 
yet become full-fledged geometric objects, like scalars! Meaning-imposers have so far refused to 
allow points into the formalities alongside scalars, vectors, etc; except as outcasts, undesirables 
who are denied full geometric rights. It is tempting to blame this on Euclid, who refused to grant 
points “magnitude”, which effectively exiled them to the interpretation where, third, they have 
been neglected, orphaned from their geometric family, and underfed to the extent that they liter-
ally have no weight at all. Exile to the interpretation—let David Hilbert describe that: 

“One should always be able to say, instead of ‘points, lines, and planes’, ‘tables, chairs, and 
beer mugs’.”11 Well, lines long ago managed to escape from Hilbert’s beer hall by dressing up as 
vectors, able to participate in black-tie formalities. Planes have recently pulled off the same for-
mal getaway by dressing up as bivectors; but points are still stuck in the pub in their underwear. 
Since they are, who really cares what their dimension is? Apparently it is very much like the di-
mension of a table, or perhaps a beer mug?—who cares? Meaning-derivers care, and they want 
to get the orphan point out of the unruly interpretation and into the ruly formalities alongside its 
geometric kin: scalars, vectors, bivectors and so on. Transition into the formalities has been a 
paradigm for mathematical progress for thousands of years; but unexpectedly, for points it will 
require, gazook, meaning inside the language, formal semantics. 

Which, for distinction, requires formal syntax. Some of this syntax has already been pre-
sented:  it is just the collection of conventional rules for Geometric Algebra—the equations, like 
the commutative, associative and distributive laws, that serve as axioms. These equations estab-
lish the valid sentences in the language. 

All the rest is semantics, which traditionally—dogmatically—has resided almost entirely 
within the mind of the person composing the sentences. That turns out to be woefully inadequate 
for the full language, where bound points generate free things. The important formal distinction 
between bound and free requires formal semantics because the syntax intentionally ignores the 

G. Harper Meaning-Imposers versus Meaning-Derivers

Rejecta Mathematica Vol. 1, No. 1, July 2009

This work is published under the Creative Commons Attribution-NonCommercial License. http://creativecommons.org/licenses/by-nc/2.5/legalcode

68

http://math.rejecta.org
http://creativecommons.org/licenses/by-nc/2.5/legalcode


 

 

distinction, for good reason. Moreover, such semantics rest, in an unanticipated way, on formal 
dimension, which, because it cannot be defined by equations, is also part of the semantics. 

Formal dimension presents a rare opportunity to please everyone. To distinguish it from the 
previous decidedly informal dimension, give it a distinguished name:  extent, which means num-
ber of points required in an extension. This will please the meaning-imposer since a line segment 
obviously requires two points, so it has extent two; a patch of plane requires three points, so it 
has extent three; and on up. Certainly, a meaning-deriver is pleased because this gets the founda-
tional dimensions right:  a point requires one point in the trivial do-nothing extension, so it has 
extent one; a scalar requires (dare I say) zero points, so it has extent zero. The meaning-imposer 
might be doubly pleased to discover that formal extent, in its intrinsically separated form, auto-
matically articulates conventional dimension. Hence, conventional geometric dimension is not 
wrong, it is just a special kind of dimension. 

To be specific, addition in the full language makes a distinction it could not have made with 
points absent, namely the distinction between the separated extent of free things, and the filled-in 
extent of bound things. This distinction is definitely part of the semantics because the syntax—
the conventional rules of Geometric Algebra—simply cannot make it. To begin understanding 
that, investigate filled-in extent from the beginning: 

Extending a point from another point produces a directed line segment that has a dimension 
one higher than that of a point. Start formalizing this by expressing it in the young symbolism:  
ab. 

Now proceed to formalize dimension by making extent an operator that accepts an argument, 
so that, for example, extent(a) produces {1} since a is a simple point. Curly braces indicate a 
list of extents, necessary because extent()’s argument might be intrinsically composite. For ex-
ample, extent(b + a + ab) produces {0, 1, 2} if simple point a has a different location than b. 
(If these points had the same location, the extension would produce Nothing with extent {2} (a 
line segment with no length); in which case extent(b + a + ab) would have been {0, 1}. Such 
potential disappearance is just one of the reasons extent() is semantic—discovering disappear-
ance requires computation.) 

So, extension from a point increments extent, as required; and what does addition of two 
points do?—what, for example, is extent(a + b)? You already know:  since a + b generates a 
single thing, and since addition does not change dimension, this extent must be {1}. Which 
brings up a subtle but very important point:  because a + b generates a point with a weight of 2, 
the extent() operator clearly ignores weight; so, in general, for any generic weighted point xx, 
extent(xx) produces {1}. 

In consequence, weight is not Euclidian “magnitude”. When Euclid asserted that a point “has 
no magnitude” he meant that it has no spatial extent like a line does, like a plane does, like a vol-
ume does... Euclid was asserting, in the technical language of the full Geometric Algebra, that a 
point has no extent greater than one. This is true:  it has precisely extent {1}, and this has noth-
ing whatsoever to do with the point’s weight, which specifies its potential scaling relations with 
its geometric kinfolk. These distinct concepts have been confused for millennia because there 
was no terminology that clearly distinguished them. The full Geometric Algebra remedies that by 
quantifying Euclidian “magnitude” with extent, and scaling relations with weight, length, area, 
volume... (Each of which is a formal kind of magnitude, un-scare-quoted—see how deviously 
confusing the vernacular is?) 
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Now for the conventional-vector question:  how does directed line segment ab move 
around? Meaning-imposers long ago asserted that directed line segments are free to move any-
where parallel to themselves; and that seems to have been wildly successful. Nevertheless, a 
meaning-deriver is not that bold; in fact he is so timid that he won’t let ab move at all, unless 
the primitive semantics allow it. Fortunately, the primitive semantics have already generated 
things that can move points around; so the meaning-deriver can try moving the endpoints of ab 
to see what happens, like this: 

Generate a roving separated–directed pair of points, add it to both a and b, and then extend 
them, thereby translating ab parallel to itself. This parallel-translated version of ab will almost 
never equal ab for a simple reason:  To be equal to ab, it would, for starters, obviously have to 
be expressible entirely in terms of points a and b. This is generally not possible because the 
translator itself is generally not so expressible. 

Well then, suppose the translator were so expressible. Then it would be a scaled version of a–
b, which translates ab somewhere along the line thru itself. In this case, however, extension ut-
terly ignores the translation, thereby making the translated version of ab equal to it. This is 
mathematical poetry arising from extension’s strong respect for summary, which, in particular, 
requires that a point extended from itself vanishes. (For pleasure and education, you might com-
pose this simple poetry yourself.) 

In consequence, ab is not a conventional vector, even tho is looks like one (since it is a di-
rected line segment). Rather it is a bound vector, bound to the line thru itself, which will be 
called its confining space. Contrariwise, a–b actually is a conventional free vector, even tho it 
does not look like one (it is not a directed line segment). It does not look like a conventional vec-
tor because it has been unconventionally disciplined to treat points as bona fide geometric ob-
jects. 

This long-overdue discipline prepares you for a hint about the elegant relationship between 
bound and free:  What is a free vector extended from a simple point? For example, what is a–b 
extended from b? Extended from a? Extended from c, not on ab’s confining line? You can eas-
ily do the math for the first two questions by appealing to respect for summary (and you’ll get 
the same answer); but to really understand the elegant relationship, you need to make acquain-
tance with all readily imaginable bound things, and then watch how they generate their free 
counterparts. 

First, extend bound vector ab, call it v, from point c not on ab’s confining line. This sweeps 
v directly back from c, filling in as it returns, thereby generating bound bivector abc, call it B. 
This bivector is bound to the plane thru itself for the same reason a bound vector is bound to the 
line thru itself:  a parallel-translated version of abc cannot equal abc unless the translating 
free vector is expressible entirely in terms of generating points a, b, c. Next, extend bound bivec-
tor B from point d not on B’s confining plane. This generates bound trivector abcd, call it T, 
which is bound to the linear space thru itself. This space happens to model extent-{4} physical 
space (count the points required in the extension), so a bound trivector is a ceiling for that space. 
Here is a picture: 
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Readily imaginable bound things 

Now for the free counterparts to these bound things. You have already seen the free counter-
part to bound vector v = ab, namely free vector v = a–b. Note these two important properties: 

(1) Bound vector v is free vector v extended from a simple point on the confining space thru 
the bound vector, exactly. You just discovered this if you took the previous hint about the rela-
tionship between bound and free. This establishes the elegant relationship between a–b and ab,    
which removes the perplexity about the exact distinction between them. (Is it now clear why 
these corresponding vectors should be articulated in the same order?) To dignify the relationship, 
call free vector v = a–b the free part of bound vector v = ab. 

(2) The free vector is composed of separate, but otherwise exactly opposite bound things 
added together. 

The emphasized phrases are universal attributes of the free-bound relationship, so it will be 
useful to ponder them briefly before examining that relationship in detail. 

First, to extend free vector v from a simple point, the simplest strategy is to place v’s tail right 
over the point before extending. Poof, the tail-on-point part of the extension will vanish because 
a point extended from itself vanishes. This leaves the head of v extended from the point, which is 
just bound vector v. This is the poof method of point extension, even more wonderful than the 
poof method of point addition because it will apply to things of even higher extent. 

Second, ponder what it will mean for separate but otherwise exactly opposite bound things of 
higher extent to be added together. As with primitive things, it will mean that sum magnitude 
diminishes to zero as sum location recedes to infinity, which will, in the limit, shift focus from 
sum to summands. There is a transparent way to demonstrate this:  successively extend by the 
independent free vectors hidden within these higher-extent things. This will automatically pro-
duce roving things having separate but otherwise exactly opposite bound ends because free vec-
tors have those properties. As a bonus, it will show that even tho bound generates free, free does 
not generate bound, which is one reason we are still stuck in the free language. (Being stuck 
there impels us to persistently try to represent bound with free, typically points with vectors, 
which is inherently contradictory because free cannot generate bound.) 

Here are the free vectors hidden in the previous readily imaginable bound things: v = a–b, w = 
b–c and x = c–d  (gaze at the previous figure). 

To begin, extend v from w:  vw = v(b–c) = vb – vc. It would be enlightening to descend 
further toward points, but there is no real need to do so because you know, from the poof method 
of free-vector extension, that this is a pair of separate but otherwise exactly opposite bound vec-
tors added together. You also know, from freedom of the v and w arguments, that there are 
countless other exactly opposite bound vector pairs equivalent to this one, differing only in loca-
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tion, all having the same separation and direction. (This is area separation, as dimensionally dis-
tinguished from the length separation of a free vector; just as area magnitude is dimensionally 
distinguished from length magnitude, and so on.) 

Here is an intuitively appealing way to understand why these variously located v(b–c) exten-
sions are all equal:  incrementally approximate them in unison by sneaking up on free vector b–c 
as before, but extend at each step. The various bound vector results will dwindle away in lock 
step as they recede to infinity until they all seem to merge together as a tiny directed dash on the 
horizon. In the limit this dash loses (length) magnitude and location, which causes its various 
summand pairs to gain (area) separation and direction. At that limit, the focus necessarily shifts 
from non-existent sum to existent summands—these summand pairs have suddenly become a 
free bivector, call it B. 

Does free bivector B have an elegant relationship with bound bivector B? Here is where the 
poof method of point extension really shines:  To extend free B from a simple point on bound B’s 
confining plane, take advantage of B’s freedom to place one of its bound vector ends over the 
point, then extend from there. Poof, the summand-on-point part of the extension vanishes be-
cause it produces no area (technically: it produces Nothing, zero, having extent {3}). This leaves 
only the other summand extended from the point—a bound bivector that is just a filled-in ver-
sion of the free one with an incremented extent. This is indeed bound bivector B. To dignify this 
elegant relationship, call free B the free part of bound B. Query:  do you still get bound B if you 
put free B’s other end on the point before extending? What if you don’t place either end on the 
point? 

Now here is a curiosity:  to get bound B from free B, you had to use something bound, 
namely a simple point. However, the game we are now playing is to extend by free vectors hid-
den within bound things; and so far that has generated something free, namely B. 

To continue this game, extend free B from the last hidden free vector, x:  Bx = B(c–d) = 
Bc – Bd. You could descend further toward points, but there is no need to do so because you 
know, from a paragraph ago, that this is a pair of separate but otherwise exactly opposite bound 
bivectors added together. You also know, from freedom of the B and x arguments, that there are 
countless other exactly opposite bound bivector pairs equivalent to this one, differing only in lo-
cation, all having the same volume separation and direction. Here is an intuitively appealing way 
to understand why these variously located B(c–d) extensions are all equal:  incrementally ap-
proximate them in unison by sneaking up on free vector c–d as before, but extend at each step. 
The various bound bivector results will dwindle away in lock step as they recede to infinity until 
they all seem to merge together as a tiny directed patch on the horizon. In the limit this patch 
loses (area) magnitude and location, which causes its various summand pairs to gain (volume) 
separation and direction. At that limit the focus necessarily shifts from non-existent sum to exis-
tent summands—these summand pairs have suddenly become a free trivector, call it T. Here is a 
picture of it with the free consorts that led to it: 
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Extension generates free things from free vectors. 

By now there should be no need to explain the relationship between free T and bound T by 
describing how the former is the free part of the latter. In general, it should now be clear that ge-
neric bound a is just its free part a extended from simple point a lying within its confining space. 
This fills in free a and binds it thru point a. In algebra, a = aa. This is truly elegant because it 
universally relates free with bound, a relationship that applies even to the latecomers, scalars and 
points. It is an algebraic fact that weighted point aa equals aa.12 Which is to say, a weighted 
point is a bound scalar, and the typeface emphasizes this, as you may have noticed. So, even tho 
scalars aren’t points, since they have lower dimension, nevertheless, by extension they give 
magnitude to simple points; and that is the deep reason points wallow in numbers in the full 
Geometric Algebra. Hence scalars are really, really, full-fledged geometric objects. 

The previous derivations showed that when extension’s arguments are free, its result is also 
free. This holds for addition as well, and here is a peek at the reason:  When two elementary free 
things are so distinct that their sum cannot coalesce to a single thing, then that composite sum of 
free things is naturally declared free by fiat. On the other hand, when such a sum can coalesce to 
a single thing, it does so by algebraically pre-shaping and positioning the two free summands so 
that, when added, an end of one cancels an end of the other, poof (imagine adding, for example, 
two free bivectors from the previous figure). The canceling pre-shaping ensures that the two sur-
viving ends are exactly opposite (and separate, else they didn’t survive)—again something free. 
So, if you begin with free vectors as your primitive elements, then you will be stuck in the free 
sub-language of the full Geometric Algebra. Therefore, don’t imagine that you can represent 
points with the conventional free language alone—that will set you up for inconsistency and con-
fusion. 

The free sub-language has the lovely property that its elements can always be juxtaposed, 
which allows you to not only extend to higher dimensions, but to also retract to lower dimen-
sions. Extension and retraction have complementary symmetries that, together, provide full in-
formation about geometric relationships. It was Clifford’s genius to conjoin them into a very in-
formative, widely celebrated Clifford product.2 In Geometric Algebra this is called the geometric 
product, and it makes the free sub-language extremely versatile and expressive—it’s a wonderful 
place to get stuck in. 

How not to distinguish free from bound. 
When you examine any contemporary book on Geometric Algebra, you discover that the vec-

tors, bivectors and trivectors within it are all depicted filled-in, as tho they were bound. And yet 
they are allowed to roam around, as tho they were not filled in. How can these books get away 
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with such blatant inconsistency? By refusing to allow points into the formalities except as out-
casts, that’s how. The precise formal distinction between bound and free (coming up) disappears 
with points left in the interpretation. This renders the inconsistency so subtle it doesn’t get no-
ticed. 

It’s not as tho there were a malicious conspiracy to exclude points; it’s more subtle than that. 
Geometers, despite mathematics’ renowned proud rejection of meaning, approach their intrinsi-
cally meaningful subject with deeply held preconceptions that are fertile and mostly correct. 
Points within the symbolism would crumble these preconceptions around the edges like this:  
Points would need the same dimension as free vectors to add properly with them. This would 
require free vectors not to be filled-in for Grassmann’s gem to be able to assign dimension con-
sistently. Points? One-dimensional? Don’t kid me. Free vectors? Not filled-in? Ha!—how could 
such things have fixed length and direction? 

When reason and logical consistency nudge comfortable misconception, misconception typi-
cally remains complacent and unmoved; so points remain in their underwear breathing beer 
fumes. Except in one glorious yet sobering case:  the curious case of Hermann Gunther Grass-
mann. 

When he happened on points late in his investigations, he quickly realized that they must have 
the same order as free vectors, namely one. This of course had generative consequences for eve-
rything on up, so he gave them orders too, corresponding to the formal dimensions developed in 
this paper. His supple accommodation of points within the formalities has yet to be matched. 
That’s the glorious part. 

Here’s the sobering part:  his order was for him not dimension, but rather a way to get things 
to interact properly, with no other meaning. Listen to this: 

There are seven types of spatial magnitude, divided into four orders: 

1st order 1. Simple or multiple points 

  2. Straight lines of definite length and direction 

2nd order 3. Definite parts of definite infinite straight lines 

  4. Plane areas of definite magnitude and direction 

3rd order 5. Definite parts of definite infinite planes 

  6. Definite volumes 

4th order 7. Definite volumes 

    Volumes appear twice here, once as magnitudes of third order, once as magnitudes of fourth order, ac-
cording as they are regarded as products of three straight lines of definite direction and length or as 
products of four points.13 

Do you recognize these things? Here’s a hint:  the first item in each pair is bound, the second 
item is free with the same extent  (neglecting separation, which must not be neglected, as ex-
plained shortly). So, in the first order there are points and free vectors, in the second order there 
are bound vectors and free bivectors, and so on. Since each pair has the same numerical extent, 
you see that Grassmann’s order indeed corresponds to my formal dimension; but his dimension 
is, again, decidedly informal. This is most evident from his perplexing comment on “volumes”, 
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in which he explicates the generative distinction between a free trivector and a bound one (in that 
order), without making a dimensional distinction between them.14 

Why did he fail to do that? Remember, he arrived at points via roving arrows, the very same 
imagery we still have of free vectors. Even tho he explicitly discarded this imagery in favor of 
abstract algebra; nevertheless, free-vectors-as-roving-arrows must have become for him an invio-
lable concept, given how incredibly fruitful it had been. When he happened on points he was al-
ready comfortable with meaningless abstraction. Indeed, by then he embraced it; so he left order 
as an abstract formality that merely oiled the gears in his algebraic machinery. To have inter-
preted order geometrically would have required him to remove the shafts of his roving arrows—
his “straight lines of definite direction and length”—leaving only arrow-heads and arrow-tails 
possessing mysteriously fixed separation and direction. But he clearly had no inclination to in-
terpret order geometrically; and almost certainly no inclination to dismantle his fertile precon-
ceptions. So, here again, comfortable misconception remained complacent and unmoved—
Grassmann was human after all. That’s my guess. 

Finite intrinsically composite semantic formalities 
Intrinsically composite, as mentioned, is hard to imagine for same-extent free things, but easy 

to do so for bound things. Vectors bound to skewed non-intersecting lines, for example, do not 
have a common-enough extension factor to sum to a single thing; so their sum has extent {2, 2}. 
These vectors can, however, sum to two things in many different ways, and the most perspicuous 
is a free bivector perpendicular to a bound vector. In physical terms, the free bivector can articu-
late an angular velocity while the bound vector articulates a velocity along some line. Or these 
things can articulate a torque combined with a linear force. In short, addition of skewed lines 
generates an expressive screw algebra, reinvented by just about everyone who has really under-
stood Grassmann.15 

Are there any other imaginable same-extent bound sums that are intrinsically composite? 
How about the simple point sum a+b? It certainly is not intrinsically composite because it re-
duces to single midpoint 2m. In fact, the humdrum sum of most weighted points reduces to a 
single thing. Well then, how about the magic sum, free vector a–b? It is intrinsically composite 
because (1) it cannot reduce to just one thing, and (2) it can always be decomposed by being un-
bundled and re-bundled differently (that’s how the poof interactions work). To put this intuitively 
and generalize it, separate but otherwise exactly opposite bound things are too distinct to sum to 
a single thing. This should not come as a surprise—exactly opposite is quite distinct. Therefore, 
a free vector has extent {1, 1}; a free bivector has extent {2, 2}; and so on. 

This notation transparently displays the separated extent of free things, but it fails to make a 
further crucial distinction. For example, it would give a free bivector the same extent as the sum 
of skewed vectors bound to non-intersecting lines, extent {2, 2}. A free bivector is a sum of par-
allel vectors bound to non-intersecting lines, which generally produces a single extent {2} result 
(as previously demonstrated by approximation); except when the bound vectors are exactly op-
posite, in which case you get exactly opposite extent {2, 2}. Exactly opposite addition is what 
distinguishes free from bound; and such addition refuses to reduce to a single result by attempt-
ing to assign contrary properties to that result:  zero magnitude and infinite “location”. The infi-
nite “location” cannot be computed because it does not exist, but the zero magnitude is straight-
forward to compute. It is the semantic formality that shifts focus from sum to summands, from 
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infinite to finite, from bound to free. Which motivates a peculiar yet precise definition of a free 
thing:  a non-zero thing with zero magnitude. That is the crucial distinction. 

Let’s put it to use:  To be non-zero, a free thing, a bivector for example, must have formal 
separation (also readily computable), transparently annotated by composite extent {2, 2}. To fur-
ther indicate that this is yin-yang composite in a cohesive exactly opposite way, One could call it 
extent {2, 2}-with-zero-magnitude. This is an accurate but clumsy way of specifying that it is a 
free bivector. Since it is free, why not instead distinguish it with free non-bold notation?—extent 
{2}. Hence, extent {2} means cohesive extent {2, 2}-with-zero-magnitude. Similarly extent {1} 
means cohesive extent {1, 1}-with-zero-magnitude, and so on. 

You can think of cohesive free extent as addition’s respectful way of “extending”. When addi-
tion is presented with separate but otherwise exactly opposite bound summands, it leaves them 
“extended” not by incrementing extent, but rather by separating it in a formal way. So, a free 
vector has formal separated extent {1}, a free bivector has separated extent {2}, and so on, just 
the numerical dimensions meaning-imposers have been declaring all along. Which is to say, free 
extent is conventional geometric dimension (called grade in the conventional free language), 
now well distinguished. 

Distinguished by separation—that’s what a tag of zero magnitude means:  this thing is not 
filled in. Extension from a simple point fills it in, suddenly giving it non-zero magnitude equal to 
its just-departed separation. This magnitude becomes annotated with incremented bold singleton 
extent. Hence, separation describes a pair of opposite summands, something free; magnitude de-
scribes one result, something bound. The lowest extent magnitude is weight. 

Weight:  a scalar extended from a simple point generates weight—non-zero magnitude anno-
tated with incremented bold singleton extent {1}. So, algebraically, a scalar is free, meaning that 
it is a non-zero thing16 tagged with a formal magnitude of zero, like all free things in the full 
Geometric Algebra. Such lowest-extent “separation” is the value of the scalar, which gets “filled 
in”—acquires locus—by extension with a simple point. 

All this expressive formal distinction arises from finally letting points enter the symbolism as 
full-fledged geometric objects. To see that this emancipation is well worthwhile, examine the 
machinations necessary to keep points out while trying nonetheless to gain their expressive 
power. You need to impose... 

Models 
The three most popular models are the vector space model, the homogeneous model, and the 

conformal model. They are easiest to understand by the way they represent the plane. (Techni-
cally, the collection of primitive semantics is a model itself, Grassmann’s point model; but it, 
unlike these, is not a clever artifice imposed on the symbolism, rather it is the DNA from which 
the symbolism is derived:  Grassmann’s point model—seed for a growing symbolism; conven-
tional models—straightjackets for an inert symbolism.) 

The vector space model of the plane begins with a formal algebra of two free vectors, whose 
inherent limitations are traditionally overcome informally. First, since these vectors are free, 
where are you going to put them? Answer: implicitly anchor them to a point, the origin. With 
their tails firmly fixed in one place, their heads can represent points—you get free vectors and 
points! Free vectors?—but you just bound them! No, let them roam around when you need them 
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to. But then you can’t use them to represent points! No, just attach them to the origin when you 
need points. And so on. This has worked surprisingly well because, even tho the various fleeting 
distinctions all reside outside the symbolism, they nonetheless reside inside a human mind, 
which is superb with fleeting distinctions. 

Fleeting distinctions won’t do for a model, however, so the modeling community has decided 
that free vectors shall be explicitly anchored to the origin. This allows the fertile vector space 
idea to be unambiguously implemented on a computer. It has the ironic consequence that all the 
free elements in the language are effectively bound thru the origin, which has become semi-
formal since it now has explicit representation in the software, even tho it has none in the algebra 
proper. Modeling enthusiasts don’t mind this self-imposed handicap because they have more 
spiffy models that overcome it. 

There is a different way to overcome the handicap that should be clear by now:  having 
moved the origin from the informalities into the semi-formalities, why not continue this advance 
by moving it right into the formalities? As previously explained, this effectively moves some of 
the semantics into the symbolism. Here are the advantages of a meaningful symbolism:  nebu-
lous distinctions outside the language become precise distinctions inside the language, which 
now lets free things move parallel to themselves but requires bound things to stay in their confin-
ing spaces. Moreover, with the origin formal, everyone will have to implement it in the same 
way, as specified by the syntax of Geometric Algebra. (With the origin semi-formal, this is left 
to the digression of the implementer—need I say more?) The natural and expressive origin-in-
the-formalities solution is obvious only in retrospect because comfortable misconception has 
rendered it almost inconceivable. 

Consequently, modelers overcome the handicaps inherent in the vector space model in a dif-
ferent way, by moving to the homogeneous model. They always describe this by saying that you 
must move up an extra dimension above the plane. Not!—a healthy plane already requires three 
dimensions. You just saw that a plane with only two dimensions is crippled. By formally intro-
ducing the origin to heal it, you increased its dimension by one; but this is not an extra dimen-
sion, it is a missing dimension! 

The origin increases dimension by one because it is just as variable as a free vector—that’s 
what enables it to make a formal getaway from Hilbert’s beer hall. Speaking abstractly, dimen-
sion just counts the number of variables available. With two free vectors, you have two variables 
available corresponding to the separation (“length”) of each vector. But you don’t have points 
yet—you don’t really have a plane. To get points, you need a point to refer your free vectors to; 
and if that is done outside the symbolism, as it always has been in the last century, then you 
mangle your free vectors in the alleyway, as just described. By formally introducing a point for 
your free vectors to collaborate with, your symbolism suddenly acquires the missing variable, 
weight, which generates weighted points thruout the plane—this is now a genuine plane; it is not 
pointless anymore. It has abstract dimension 3 corresponding to formal extent {3}. 

Consequently, “move up an extra dimension” really means “use another free vector to stand 
in for the missing variable that a point would supply, had not preconception abandoned it in the 
gutter.” Stating it baldly (badly?) like this makes achieving it obvious:  let the separation of the 
“extra” free vector basis element correspond to the weight of the missing origin. Hence, distance 
above the plane corresponds to point weight; so unit points—locations—can be represented by 
anchored free vectors whose heads lie one unit above the original plane. The new unit-separated 
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plane becomes a model-with-“points”. (Modelers call them points, un-quoted, but their “points” 
are always free vectors masquerading as points. Such things aren’t real points—they are undesir-
ables, tacitly denied full geometric rights. This is easy to demonstrate:  real points with full rights 
would, for consistency, induce free vectors with separation, absent in every model except the 
generative one, Grassmann’s point model.) 

The homogeneous model is fun to play with because it shows, in an unexpected way, how 
perpendicular distance can precisely represent point weight. By applying some mind-boggling 
dimension hopping, you can use this model to articulate both free and bound things, thereby 
overcoming the shortcomings of the vector space model. Of course such contortions make sense 
only if you are absolutely determined to keep real points out of your formalities. 

Semi-formally anchored free vectors give the homogeneous model its own peculiar handi-
caps. To bypass my point sympathies, let a model enthusiast expose them: 

... the geometric algebra approach exposes some weaknesses in the homogeneous model. It turns 
out that we cannot really define a useful inner product in the representation space Rn+1 that repre-
sents the metric aspects of the original space Rn well; we can only revert to the inner product of Rn. 
As a consequence, we also have no compelling geometric product and our geometric algebra of 
Rn+1 is impoverished ...17 

Not to worry—there is another model that overcomes this fresh impoverishment, the confor-
mal model, “which requires two extra dimensions”,17 meaning one dimension above the defective 
homogeneous model, which constitutes one genuine dimension above Grassmann’s formal point 
space. The genuine extra dimension is given negative distances, thereby causing the augmented 
space to curve in such a way that extension in it can be projected down to rounds in the original 
space.18 So, in a conformal representation of physical space, the extension of three points gener-
ates the unique circle thru them; the extension of four points generates the unique sphere thru 
them. “Points” themselves are rounds with zero radius (null vectors). Clever, huh? It gets even 
better:  by including a special “point at infinity”, ∞, you can generate flats, rounds with infinite 
radius. Moreover... 

Our model also solves another problem that perplexed Grassmann throughout his life. He was fi-
nally forced to conclude that it is impossible to define a geometrically meaningful inner product be-
tween points. The solution eluded him because it requires the concept of indefinite metric that ac-
companies the concept of null vector. Our model supplies an inner product a⋅b that directly repre-
sents the Euclidean distance between the points. This is a boon to distance geometry, because it 
greatly facilitates computation of distances among many points.19 

Altho it is true that the bondage of Grassmann’s points a and b naturally precludes an inner 
product for them (since they cannot be juxtaposed), it is not true that this precludes finding the 
distance between them. Conjure up free vector a–b, and then use Grassmann’s inner product—
there is no need to hop on the conformal pony, lovely tho it may be, to access its high-
dimensional inner product. 

There is no question that models are lovely, with beautiful, fruitful mathematics generated by 
incredibly curious, creative mathematicians whom I deeply admire. But models typically solve 
problems they have inflicted on themselves by leaving the origin in the semi-formalities, where it 
cannot interact properly with its geometric kin. Even worse, they solve problems in an indirect, 
obscure and inefficient way that Grassmann’s full language can solve in a direct, transparent and 
efficient way. The formal point-generated distinction between bound and free (obviously lacking 
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in the previous purely free models) enables this. This distinction, coupled with Clifford’s unifica-
tion of the free sublanguage, gives you an exceptionally expressive way to articulate geometric 
concepts:  hop in the free sublanguage when you need its services; hop in the bound part when 
you need things in certain places; stay in the free sublanguage as much as possible because it is 
most versatile and expressive. 

To illustrate, simple subtraction of points a and b moved these bound things into the free lan-
guage where distance calculations are available. Simple subtraction can also generate rounds by 
moving points into the free language. For example, to generate the circle thru three points, sub-
tract the points pairwise to form three free vectors, then apply symmetry to find the center point. 
Finally, do a direct, transparent and efficient fixed-radius computation. Or just apply symmetry 
directly to generate peripheral points iteratively—this is even more direct, transparent and effi-
cient. (As for flats, why not generate them with ordinary low-dimensional extension? This avoids 
the superfluous imposed “point at infinity” and is (need I say?) direct, transparent and efficient.) 

Simple subtraction of separate but otherwise identical bound things can always be used to 
move them into the versatile free sublanguage. This is seldom convenient for anything but 
points, however, and seldom necessary either because the elegant relationship between bound 
and free offers an easier way to hop into the free sublanguage:  extract free parts. 

Extracting free parts is such a crucial bridge from the full Geometric Algebra into its free 
sublanguage that I like to consider it a primitive operation, on par with extension, retraction and 
their unification, the geometric product. This requires a pithy notation for extracting free parts; 
and it also requires the elegant relationship, a = aa, to be added to the symbolism as an axiom. 
(For the purpose of generating free parts, I’m guessing it really is an axiom:  If you don’t want it 
as an axiom, then you have to isolate free a on the right to directly generate free parts; and good 
luck with that. Remember, point a cannot participate in a retraction (an inner product), nor a 
geometric product, so how are you going to un-extend it to the scalar unit to isolate free a? If this 
intrigues you, study how Whitehead did it by crippling his language with tacit context.20) 

As a practical matter, free parts discard locus information so they are easy to compute. Espe-
cially easy if you keep your basis as free as possible by allowing just one point in it, the origin. 
With this discipline, the origin is the sole source of bondage; so extracting a free part amounts to 
extricating a (generally translated) origin. 

Finally, hopping into the bound part of Geometric Algebra from its free sublanguage is trivial 
in two ways: (1) Extend from a simple point. Since this point can be smoothly moved, any bound 
thing can be smoothly moved.  (2) Decompose the free thing using addition’s associative law. 
Suddenly you have two relatively bound things, one of which gets associated with something 
else, thereby transferring the relative bondage to it. The screw algebra illustrates this well, as the 
following section explains. 

The free–bound distinction is intrinsically semantic. 
Can the conventional rules of Geometric Algebra, the axioms, make the free–bound distinc-

tion? If so, they would have to distinguish between a sum and its summands. But they can’t—as 
far as the axioms are concerned, a sum and its added summands are literally equal. That is a 
great boon because it allows free and bound to be articulated together, and intermingled. For ex-
ample, altho the semantics make a clear distinction between magnitude and separation, the axi-
oms can’t because they cannot distinguish a sum from its summands. Instead, the axioms simply 
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articulate magnitude and separation simultaneously, indifferently; and automatically switch from 
one to the other as the situation dictates. To begin understanding this, scale a free vector as you 
sneak up on it. During the approximation you will be scaling a diminishing weight. At the limit, 
however, you will suddenly be scaling a separation—a startling revelation for me. (At that limit 
you will be simultaneously scaling a zero weight, which will of course remain zero.) The axi-
oms’ indifferent automatic switching allows free things to be decomposed into bound things 
when need be, or vice versa. In short, the axioms do their syntactic duty, which is:  let you ex-
press any valid sentence in Geometric Algebra, and let you transform that into more informative 
sentences. 

The free–bound distinction requires distinguishing between a sum and its summands; so if 
syntax can’t do it, semantics will have to. You have just seen that this is done by a formal zero–
nonzero distinction. To illustrate just how adamantly semantic such distinction is, let’s resolve 
the final dangling perplexity: 

“Vectors bound to skewed non-intersecting lines, for example, cannot sum to a single thing; 
consequently their sum has extent {2, 2}. These vectors can, however, sum to two things in many 
different ways, and the most perspicuous is a free bivector perpendicular to a bound vector.” ??? 

How can that be? A free bivector plus a bound vector seems to have extent {2, 2}, which 
would expand into extent {{2, 2}-with-zero-magnitude, 2}. Can these three things (when fully 
decomposed) possibly reduce to extent {2, 2}? Yes—the perspicuous sum is a convenient and 
illuminating canonical form, not a minimal form. A minimal form has extent {2, 2} and this is 
easy to see:  move the free bivector so that the tail of one of its ends is right on the tail of the 
bound vector. Conjoining these two vectors like this gives them a common extension factor that 
engages extension’s respect for summary. This collapses the two vectors to one, leaving two 
skewed bound vectors. (Here you see relative bondage, transparently exposed. Reverse the pro-
cedure orthogonally to get the canonical form.) 

So you see, for dimension to be well defined, addition must present the extent() operator 
with a minimal form. This is inherently computational—intrinsically semantic. Magnitude is an 
important part of this computation since it distinguishes free from bound, an essential distinction 
for a minimal form. 

(If you want addition to give you a canonical form, you will have to ask for it—that is how 
semantics works; and it is just one more reason an expressive geometric language requires se-
mantics. Whether your request should be formal or semi-formal is a question we haven’t pon-
dered adequately because we have shunned semantics.) 

The computer people know that, in pathological cases, computation cannot distinguish be-
tween zero and darn-close-to-zero. With respect to magnitude this means that, in pathological 
cases, the full Geometric Algebra cannot distinguish between free and bound—it will not pro-
duce a genuine minimal form. This does not, however, invalidate the distinction that magnitude 
makes; it just requires extra care to do well, as with all formal semantics. Keeping free things 
bundled goes a long way toward minimizing this problem—to repeat, stay as free as possible and 
take care to represent free bundles by individual names, which keeps their bundles intact during 
computation. This forces their zero magnitude to stay zero, unambiguously. The extreme way to 
do that is to remain in the comfortable conventional free language; but then you are back where 
you started—bigoted against points. 

G. Harper Meaning-Imposers versus Meaning-Derivers

Rejecta Mathematica Vol. 1, No. 1, July 2009

This work is published under the Creative Commons Attribution-NonCommercial License. http://creativecommons.org/licenses/by-nc/2.5/legalcode

80

http://math.rejecta.org
http://creativecommons.org/licenses/by-nc/2.5/legalcode


 

 

Finally, it is not as if mathematics has been immaculately devoid of formal semantics, tho 
many mathematicians are reluctant to admit it. What, for example, is a metric but a precise as-
signment of meaning to distance? That is just as semantic, and just as formal, as the distinction 
between free and bound; in fact it helps establish that distinction in the full Geometric Algebra. 
Mathematicians should come out of the closet about semantics. Computer scientists outed long 
ago and they feel liberated now. 
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