
An open letter concerning

Subspaces that Minimize the Condition Number of a

Matrix

Siddharth Joshi Stephen Boyd

This article poses and answers the following question: How do you choose a subspace of given
dimension that minimizes the condition number of a given matrix on that subspace? Part of the
answer is a bit surprising (at least to us): When the subspace dimension is no more than half the
size of the matrix, a subspace can be found on which the matrix has condition number one.

We think our paper makes it clear that we consider our result simple, but interesting and not
obvious. We certainly make no claims as to its depth, or its potential applications. It is not in the
literature, and does not follow in any direct or simple way from existing results. In other words, it
is, as far as we know, new.

The manuscript was rejected by two journals. The first rejection was based on the reviewers
and editor noting that someone had written a paper that seemed to cover similar material. But a
cursory reading of that paper, and ours, show that while the other paper shared a few key words
with ours, the results were in no way related. On the positive side, one reviewer suggested a
simplification of our proof, which we gladly used in our revision, which was also rejected.

We then submitted the article to another journal. In this case, the editor apparently did not
even understand the result, which is stated very clearly, in completely standard, and elementary,
mathematical language. Moreover, he insisted that we describe an application, so we added a
simple application involving an ellipsoid intersected with a subspace. It was rejected.
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Subspaces that Minimize the Condition Number of a
Matrix

Siddharth Joshi Stephen Boyd∗

Abstract

We define the condition number of a nonsingular matrix on a subspace, and consider
the problem of finding a subspace of given dimension that minimizes the condition
number of a given matrix. We give a general solution to this problem, and show in
particular that when the given dimension is less than half the dimension of the matrix,
a subspace can be found on which the condition number of the matrix is one.

1 The problem

Suppose A ∈ Rn×n and V ⊆ Rn is a subspace with dimV = k ≥ 1. We define the maximum
gain (minimum gain) of A on V , as

Gmax = sup
x∈V, x6=0

‖Ax‖
‖x‖ , Gmin = inf

x∈V, x6=0

‖Ax‖
‖x‖ ,

respectively, where ‖ ‖ denotes the Euclidean norm. When A is nonsingular, we define its
condition number on the subspace V as

κV(A) = Gmax/Gmin.

The condition number of A on any one-dimensional subspace is 1, and its condition number
on V = Rn is the (usual) condition number of A, which we denote κ(A). The condition
number on any subspace is between 1 and κ(A). If κV(A) = 1, we say that A is isotropic on
V , since its gain ‖Ax‖/‖x‖ is the same for any nonzero vector x ∈ V .

In this note we address the following problem: Given a nonsingular matrix A ∈ Rn×n, and
k ∈ {1, . . . , n}, find a subspace V ⊆ Rn of dimension k which minimizes κV(A). The number
κV(A) is a measure of the anisotropy of the linear function induced by A, restricted to the
subspace V , so our problem is to find a subspace of dimension k on which A is maximally
isotropic.

∗The authors are with the department of Electrical Engineering at Stanford University. Email addresses:
Siddharth Joshi: sidj@stanford.edu, Stephen Boyd: boyd@stanford.edu.
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We will show that the minimum possible condition number of A, on a subspace of di-
mension k, is given by

inf
V : dimV=k

κV(A) = max
(
σn−k+1

σk

, 1
)

=

{
1 k ≤ dn/2e,
σn−k+1/σk k > dn/2e, (1)

where σ1 ≥ · · · ≥ σn > 0 are the singular values of A. (The infimum is over all subspaces of
Rn of dimension k.) This means, in particular, that for k ≤ dn/2e, we can find a subspace
of dimension k on which A is isotropic.

There are many classical results that identify a subspace of a given dimension that min-
imizes or maximizes some quantity that depends on the subspace and matrix. For example,
the Courant-Fischer theorem tells us that the minimum value of Gmax, over all subspaces
of dimension k, is σn−k+1, and the maximum value of Gmin, over all subspaces of dimension
k, is σk. For these and similar results, see, e.g., [3, §4.2] or [1]. Also, the idea of condition
number of a matrix restricted to a particular subspace can be seen in [2].

We can give a geometric application (or interpretation) of our problem. We are given
an ellipsoid E = {z | ‖Az‖ ≤ 1} in Rn, where A ∈ Rn×n is nonsingular. Our goal is to
find a k dimensional subspace V so that the ellipsoid V ∩ E is as spherical as possible, i.e.,
has minimum eccentricity. (The eccentricity of V ∩ E is defined as the ratio of its maximum
semi-axis length to its minimum semi-axis length, which is exactly κV(A).) The solution is to
choose V that minimizes the condition number of A on V . Our result (1) can be interpreted
in this geometric setting. For example, if k < dn/2e, we can always find a subspace of
dimension k for which V ∩E is perfectly spherical, i.e., a ball. As a very simple special case,
we see that for any ellipsoid in R3, there is a plane that intersects it in a ball. Our general
result (1) can be considered a generalization of this simple fact.

2 The solution

Suppose Q and Z are n× n orthogonal matrices, i.e., QTQ = ZTZ = I. Then we have

κV(QAZ) = κW(A),

where W = ZV = {Zv | v ∈ V}. It follows that

inf
V : dimV=k

κV(A) = inf
V : dimV=k

κV(QAZ),

since the first orthogonal matrix Q has no effect, and the second orthogonal matrix Z simply
changes the parametrization of subspaces of dimension k.

Now let A = UΣV T be a singular value decomposition of A, i.e., U and V are orthogonal,
and Σ = diag(σ1, . . . , σn). Our observation above, with Q = UT , Z = V , shows that

inf
V : dimV=k

κV(A) = inf
V : dimV=k

κV(Σ).
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So we can just as well solve the problem for the diagonal matrix Σ. (To reconstruct a
subspace of dimension k on which A has least condition number, we find a subspace of
dimension k for which Σ has least condition number, and multiply it by V .)

Now our problem is to find a subspace V of dimension k which minimizes κV(Σ). We will
show that

inf
V : dimV=k

κV(Σ) = max
(
σn−k+1

σk

, 1
)

=

{
1 k ≤ dn/2e,
σn−k+1/σk k > dn/2e, (2)

Let {e1, . . . , en} be the standard basis for Rn, i.e., for i = 1, . . . , n, eij = 0 if i 6= j and
eij = 1 otherwise.

We first give a simple result. Suppose i < j, and let σ satisfy σi ≥ σ ≥ σj. Then
there is a unit vector z ∈ span{ei, ej} for which ‖Σz‖ = σ. This can be seen several ways.
For example, we can rotate a unit vector z from ei towards ej. The norm ‖Σz‖ varies
continuously from σi to σj, and therefore has the value σ at some rotation angle. We can
easily construct such a z. If σi = σj, we can take z = ei or z = ej. If σi > σj, we can take

z =
(σ2 − σ2

j )1/2ei + (σ2
i − σ2)1/2ej

(σ2
i − σ2

j )1/2
.

It is easily verified that ‖z‖ = 1 and ‖Σz‖ = σ.

2.1 Case 1: k ≤ dn/2e
To establish (2), we will construct a subspace V∗ of dimension k, with κV∗(Σ) = 1. We will
construct an orthonormal basis {z0, z1, . . . , zk−1} for V∗. We start with z0 = edn/2e. Note
that ‖Σz0‖ = σdn/2e.

Next, we choose a unit vector z1 ∈ span{edn/2e−1, ed(n+1)/2e+1} that satisfies ‖Σz1‖ =
σdn/2e. We can do this using our simple result above, noting that

σdn/2e−1 ≥ σdn/2e ≥ σd(n+1)/2e+1.

We note that z1 ⊥ z0 and Σz1 ⊥ Σz0.
We continue the construction, taking z2 as any unit vector

z2 ∈ span{edn/2e−2, ed(n+1)/2e+2}
that satisfies ‖Σz2‖ = σdn/2e. This continues, until we have unit vectors z0, . . . , zk−1. These
vectors are mutually orthogonal, since each one is in the span of two standard basis vectors,
and these pairs of standard basis vectors are disjoint. Since Σ is a diagonal matrix, the
vectors Σz0, . . . ,Σzk−1 are mutually orthogonal.

We now show that κV∗(Σ) = 1. For any nonzero vector b ∈ V∗, the gain of Σ in the
direction of b, ‖Σb‖/‖b‖ = σdn/2e, because the gain of Σ in the direction of any unit vector
in the orthonormal basis {z0, . . . , zk−1} of V∗ is σdn/2e. Thus Gmax = Gmin = σdn/2e, and
therefore κV∗(Σ) = 1.
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2.2 Case II: k > dn/2e
To establish (2), we first construct a subspace V∗ of dimension k, with κV∗(Σ) = σn−k+1/σk,
and then show that for any subspace V of dimension k, κV(Σ) ≥ κV∗(Σ).

We will construct an orthonormal basis for V∗. We start with the 2k − n vectors
{en−k+1, en−k, . . . , ek−1, ek}. We will choose n− k unit vectors, z1, . . . , zn−k, such that

{z1, . . . , zn−k, en−k+1, . . . , ek−1, ek}
forms an orthonormal basis for V∗. The n − k unit vectors z1, . . . , zn−k will be chosen in
span{e1, . . . , en−k, ek+1, . . . , en}, and will therefore be orthogonal to {en−k+1, . . . , ek}.

Choose a unit vector z1 ∈ span{e1, en}, satisfying ‖Σz1‖ = σk. We can do this using
the simple result given earlier, since σ1 ≥ σk ≥ σn. We note that z1 ⊥ ej, and Σz1 ⊥ Σej,
j = n− k + 1, . . . , k.

We continue the construction, choosing a unit vector z2 ∈ span{e2, en−1}, satisfying
‖Σz2‖ = σk. This continues, until we have chosen a unit vector zn−k in span{en−k, ek+1},
satisfying ‖Σzn−k‖ = σk.

The vectors z1, . . . , zn−k are mutually orthogonal, since each one is in the span of two
standard basis vectors, and these pairs of standard basis vectors are disjoint. Also zi ⊥
ej for i = 1, . . . , n − k and j = n − k + 1, . . . , k, since each vector zi is in the span of
two standard basis vectors which are not in the set {en−k+1, . . . , ek}. Thus {z1, . . . , zn−k,
en−k+1, en−k, . . . , ek−1, ek} forms an orthonormal basis for V∗. Similarly, since Σ is a diagonal
matrix, the vectors Σz1, . . . ,Σzn−k,Σen−k+1, . . . ,Σek are mutually orthogonal.

We now show κV∗(Σ) = σn−k+1/σk. Let b any nonzero vector in V∗, say,

b = β1z1 + · · ·+ βn−kzn−k + βn−k+1en−k+1 + · · ·+ βkek.

The gain of Σ in the direction b is

‖Σb‖
‖b‖ =

(∑n−k
i=1 β

2
i ‖Σzi‖2 +

∑k
j=n−k+1 β

2
j ‖Σej‖2∑n−k

i=1 β
2
i ‖zi‖2 +

∑k
j=n−k+1 β

2
j ‖ej‖2

)1/2

=

(∑n−k
i=1 β

2
i σ

2
k +

∑k
j=n−k+1 β

2
jσ

2
j∑n

i=1 β
2
i

)1/2

,

and therefore σn−k+1 ≥ ‖Σb‖/‖b‖ ≥ σk. For b = en−k+1, ‖Σb‖/‖b‖ = σn−k+1, so Gmax =
σn−k+1; for b = ek, we have ‖Σb‖/‖b‖ = σk, so Gmin = σk. It follows that κV∗(Σ) =
σn−k+1/σk.

Now we will show that for any subspace V of dimension k, κV(Σ) ≥ σn−k+1/σk. By the
Courant-Fischer theorem, for any subspace V of dimension k, Gmax ≥ σn−k+1 and Gmin ≤ σk.
It follows that κV(Σ) = Gmax/Gmin ≥ σn−k+1/σk. This establishes (2), and therefore (1).
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