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An open letter concerning
WInHD: Wavelet-based Inverse Halftoning via Deconvolution

Ramesh Neelamani and Richard Baraniuk

Birth: The niche problem of inverse halftoning error-diffused halftones has been addressed by a
number of solid researchers using several practical and effective methods. However, due to the non-
linearity of the halftoning process and the complexities of the human visual system, the methods
proposed to date have been ad hoc.

At first glance, we thought that we had little chance of coming up with even a mediocre solution
to the nonlinear inverse halftoning problem. We pursued lines of research from photon-limited
imaging and Polya trees, but those approaches lead nowhere. One day, Rob Nowak found some
literature on an intriguing linear approximation to halftoning. We were pleasantly surprised when
a wavelet-thresholding based estimator based on this linear approximation produced competitive
results (not only in terms of the workhorse mean-squared-error (MSE) metric but also in terms of
a standard visual quality metric). We called our algorithm Wavelet-based Inverse Halftoning via
Deconvolution (WInHD).

We thought that WInHD would be a “slam-dunk” paper that would certainly interest the image
processing community, because in addition to presenting competitive results near the state-of-the-
art, our insights also reduced the inverse halftoning problem to a well-understood deconvolution
problem. Furthermore, assuming that the linear approximation was accurate and that the model
noise was Gaussian, we were able to derive and analyze bounds on WInHD’s MSE performance as
the image resolution increased.

With high optimism, we submitted a paper to a top-tier image processing journal.

Death: But alas, our enthusiasm was deflated due to the following review points, which we disagree
with.

e The linear approximation was deemed questionable. Any claims about optimality were
deemed to be overstated.

e Our results were deemed to be visually inferior. The metrics used used to evaluate our
simulation results did not conform to the quality of the images as perceived. We were urged
to seek input from the experts in the field and then publish the results of the survey.

The combination of lukewarm reviews and diverging author interests meant that the paper had to
be abandoned.

After-life: With its publication in Rejecta Mathematica, we would like to honestly address some
of the issues raised in our paper’s day of reckoning.

We believe that while the reviewers raised several valid points, the paper contained several
contributions that would benefit the image processing community. Addressing the linear approx-
imation point, we agree that a linear approximation to the halftoning process is not suitable for
all purposes. However, our view is that the surprising results obtained using such a model make
our paper more, not less, interesting. We do concede that the optimality claims made in the paper
need to be taken with a this linear approximation in mind. However, the limitations of our analysis
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have been clearly stated in the paper (it was termed as conditional optimality in the paper, but
perhaps our analysis required some bigger and bolder disclaimers).

On the visual quality issue, beauty indeed lies in the eyes of the beholder! Like a majority of
image processing practitioners, we agree that the MSE may be inadequate to measure the visual
quality of an image. However, in our paper, we employed all of the metrics that were accessible
in the literature (that is, we did not cherry-pick them) to substantiate that our method provided
“superior visual” performance (arguably a strong term to use, but certainly not obviously wrong).
Surveys can certainly be an effective approach to analyzing an image processing result. But, while
useful, conducting surveys for every image processing paper borders on onerous. As an alternative,
we published our code so that our results were reproducible and so that our method could be tested
on anyone’s images of choice.

The tussle about the visual quality improvement afforded by WInHD seems to have no easy
resolution in sight. However an even larger question emerges. Is it really necessary for follow-on
papers to always significantly improve upon previous results? Should a paper’s publishablity be so
heavily reliant on the improved results that it produces? How about insights that may open some
closed doors?
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WInHD: Wavelet-based Inverse Halftoning
via Deconvolution

Ramesh Neelamani* and Richard Baraniuk

Abstract

We propose the Wavelet-based Inverse Halftoning via Deconvolution (WInHD) algorithm to
perform inverse halftoning of error-diffused halftones. WInHD is motivated by our realization
that inverse halftoning can be formulated as a deconvolution problem under Kite et al.’s linear
approximation model for error diffusion halftoning. Under the linear model, the error-diffused
halftone comprises the original gray-scale image blurred by a convolution operator and colored
noise; the convolution operator and noise coloring are determined by the error diffusion tech-
nique. WInHD performs inverse halftoning by first inverting the model-specified convolution
operator and then attenuating the residual noise using scalar wavelet-domain shrinkage. Since
WInHD is model-based, it is easily adapted to different error diffusion halftoning techniques.
Using simulations, we verify that WInHD is competitive with state-of-the-art inverse halftoning
techniques in the mean-squared-error sense and that it also provides good visual performance.
We also derive and analyze bounds on WInHD’s mean-squared-error performance as the image
resolution increases.

Key words: inverse halftoning, error diffusion, deconvolution, wavelets, wavelet-vaguelette.
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1 Introduction

Digital halftoning is a common technique used to render a sampled gray-scale image using only
black or white dots [1] (see Figures 3(a) and (b)); the rendered bi-level image is referred to as a
halftone. Inverse halftoning is the process of retrieving a gray-scale image from a given halftone.
Applications of inverse halftoning include rehalftoning, halftone resizing, halftone tone correction,
and facsimile image compression [2,3]. In this paper, we focus on inverse halftoning images that
are halftoned using popular error diffusion techniques such as those of Floyd et al. [4], and Jarvis
et al. [5] (hereby referred to as Floyd and Jarvis respectively).

Error-diffused halftoning is non-linear because it uses a quantizer to generate halftones. Re-
cently, Kite et al. proposed an accurate linear approximation model for error diffusion halftoning
(see Figure 4) [6,7]. Under this model, the halftone y(n1,ng) is expressed in terms of the original
gray-scale image x(n1,n2) and additive white noise v(n1,n2) as (see Figure 1)

y(ni,n2) = Px(ni,ng) + Qy(ny,n2)
= (p*2)(n1,n2) + (¢ x7)(n1,n2), (1)

with * denoting convolution and (ni,ng) indexing the pixels. The P and Q are the linear time-
invariant (LTI) systems with respective impulse responses p(ni,n2) and g(ny,n2) determined by
the error diffusion technique.

From (1), we infer that inverse halftoning can be posed as the classical deconvolution problem
because the gray-scale image x(nq,n2) can be obtained from the halftone y(nq,n2) by deconvolving
the filter P in the presence of the colored noise Qv(ni,n2). Conventionally, deconvolution is
performed in the Fourier domain. The Wiener deconvolution filter, for example, would estimate
x(n1,n2) by inverting P and regularizing the resulting noise with scalar Fourier shrinkage. As we
will see, inverse halftoning using a Gaussian low-pass filter (GLPF) [8] can be interpreted as a naive
Fourier deconvolution approach to inverse halftoning.

Unfortunately, all Fourier-based deconvolution techniques induce ringing and blurring artifacts
due to the fact that the energy of edge discontinuities spreads over many Fourier coefficients.
As a result of this uneconomical representation, the desirable edge Fourier coefficients are easily
confounded with those due to the noise [9-11].

In contrast, the wavelet transform provides an economical representation for images with sharp
edges [12]. This economy makes edge wavelet coefficients easy to distinguish from those due to the
noise and has led to powerful image estimation algorithms based on scalar wavelet shrinkage [11, 13].

The wavelet transform was first exploited in inverse halftoning by J. Luo et al. [14]. Xiong et al.
extended this algorithm using non-orthogonal, redundant wavelets to obtain improved results for
error-diffused halftones [15]. Both these algorithms rely on a variety of steps such as clipping and
edge-adapted noise attenuation in the wavelet subbands to exploit different empirical observations.
However, these steps and their implications are not theoretically well-justified.

To simultaneously exploit the economy of wavelet representations and the interplay between
inverse halftoning and deconvolution, we propose the Wawvelet-based Inverse Halftoning via De-
convolution (WInHD) algorithm (see Figure 2) [16]. WInHD provides robust estimates by first
inverting the convolution operator P determined by the linear model (1) for error diffusion and
then effectively attenuating the residual colored noise using wavelet-domain scalar shrinkage oper-
ations [13,17]. Since WInHD is model-based, it easily adapts to different error diffusion halftoning
techniques. See Figure 3 for simulation results.
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Figure 1: Linear approximation for error diffusion halftoning. Under the linear model of [6, 7], the error-
diffused halftone y(ny,ns) comprises the original gray-scale image x(ny,ng) passed through an LTI system
P and white noise y(ni,ng) colored by an LTI system Q. The systems P and Q are determined by the error
diffusion technique.

Halftone Z(n1,ma) | Wavelet WInHD estimate
— P! > shrinkage | -
y(n1,na) AW Zyw(ny,ng)

Figure 2: Wavelet-based Inverse Halftoning via Deconvolution (WInHD). WInHD inverts the convolution
operator P to obtain a noisy estimate (n1,n2) of the gray-scale image. Subsequent scalar shrinkage with AW
in the wavelet domain (for example, level-dependent hard thresholding) effectively attenuates the residual
noise corrupting T(ny,ng) to yield the WInHD estimate Tw(ny,nz).

Unlike previous inverse halftoning algorithms, we can analyze the theoretical performance of
WInHD under certain conditions. For images in a Besov smoothness space, we derive the minimum
rate at which the WInHD estimate’s mean-squared-error (MSE) decays as the resolution increases;
that is, as number of pixels in the gray-scale image tends to infinity. We assume that the linear
model for error diffusion (1) is exact and that the noise v(ni,n2) is Gaussian. Further, if the
gray-scale image x(n1,n2) contains some additive noise (say, scanner noise) before halftoning that
is Gaussian, then we show that the MSE decay rate enjoyed by WInHD in estimating the noise-free
x(n1,n9) is optimal; that is, no other inverse halftoning algorithm can have a better error decay
rate for every Besov space image as the number of image pixels increases.

Section 2 describes Kite et al.’s linear model for error diffusion halftoning from [6,7]. Section
3 clarifies the equivalence between inverse halftoning and deconvolution and also analyzes Fourier-
domain inverse halftoning. Section 4 presents a brief overview of wavelets. Section 5 discusses the
proposed WInHD algorithm and its theoretical performance. Section 6 illustrates the experimental
performance of WInHD. Section 7 provides conclusions and future directions. A technical proof in
Appendix A completes the paper.
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(a) Original z(ny, n2) (b) Floyd halftone y(nq,n2)

(c) Gradient estimate [18] (PSNR = 31.3 dB) (d) WInHD estimate (PSNR = 32.1 dB)

Figure 3: (a) Original Lena image (512 x 512 pixels). (b) Floyd halftone. (c) Multiscale gradient-based
estimate [18], PSNR = 31.3 dB. (d) WInHD yields competitive PSNR performance (32.1 dB) and visual
performance. (All documents including the above images undergo halftoning during printing. To minimize
the halftoning effect, the images have been reproduced at the maximum size possible.) See Figure 8 for
image close-ups.
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(b) Linear approximation

Figure 4: (a) Error diffusion halftoning. The gray-scale image pixels x(ni,ns2) are quantized to yield
y(n1,n2) and the quantization error e(ny,ns) is diffused over a causal neighborhood by the error filter H.
(b) The linear model approximates the quantizer with gain K and additive white noise y(ny,nz2) [6].

2 Linear Model for Error Diffusion

In this section, we describe the non-linear error diffusion halftoning and the linear approximation
proposed in [6,7].

Digital halftoning is a process that converts a given gray-scale digital image (for example, each
pixel value € [0,1,...,255]) into a bi-level image (for example, each pixel value = 0 or 255) [1].
Error diffusion halftoning is one popular approach to perform digital halftoning. The idea is to take
the error from quantizing a gray-scale pixel to a bi-level pixel and diffuse this quantization error over
a causal neighborhood. The error diffusion ensures that the spatially-localized average pixel values
of the halftone and original gray-scale image are similar; therefore, the halftone visually resembles
the gray-scale image. Figure 4(a) illustrates the block diagram for error diffusion halftoning. The
x(n1,n2) denote the pixels of the input gray-scale image and y(ni,mn2) denote the bi-level pixels
of the output halftone. The z'(n1,n2), which yields y(ni,ns) after quantization, is obtained by
diffusing the quantization error e(ni,ns) over a causal neighborhood of x(n1,n2) using the error
filter H. The quantizer makes error-diffused halftoning a non-linear technique. Error diffusion
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Figure 5: Error filters h(ny,ng) for Floyd [4] and Jarvis [5] error diffusion. The quantization error at the
black dot is diffused over a causal neighborhood according the displayed weights.

techniques such as Floyd [4] and Jarvis [5] are characterized by their choice of H’s impulse response
h(n1,n2) (see Figure 5).

Recently, Kite et al. proposed an accurate linear model for error diffusion halftoning [6, 7].
This model accurately predicts the “blue noise” (high-frequency noise) and edge sharpening effects
observed in various error-diffused halftones. As shown in Figure 4(b), this model approximates
the effects of quantization using a gain K followed by the addition of white noise v(n1,n2). The
halftone y(n1,n2) can then be written in terms of the gray-scale image z(n1,n2) and the additive
white noise v(n1,n2) as in (1); the error diffusion technique determines the 2-dimensional (2-D)
frequency responses of the LTI filters P and Q as

K
PR = T =G ) @
QU fo) = — UL 3)

1+ (K - 1)H(f1, f2)

with P(f1, f2), Q(f1, f2), and H(f1, f2) denoting the respective 2-D Fourier transforms of p(ni, ns),
q(n1,n2), and h(ni,ne). For any given error diffusion technique, Kite et al. found that the gain K is
almost constant for different images. However, the K varied with the error diffusion technique [6];
for example, K = 2.03 for Floyd, while K = 4.45 for Jarvis. Figure 6 (a) and (b) illustrate
the radially-averaged frequency response magnitudes of the filters P and Q for Floyd and Jarvis
respectively; these responses are obtained by averaging over an annulus of constant radius in the
2-D frequency domain [1]. In [7], Kite et al. further generalized the linear model of (1) by using
different gains K and K, in the signal transfer function P(f1, f2) and the noise transfer function
Q(f1, f2) respectively: P(f1, f2) := m and Q := % In this paper, we
assume a single gain factor K for both the signal and noise transfer functions as proposed in [6].

3 Inverse Halftoning ~ Deconvolution

Given a halftone y(ni,n2) (see Figure 4(a)), inverse halftoning aims to estimate the gray-scale
image z(n1,n2). In the classical deconvolution problem, given the blurred and noisy observation
y(n1,n9) as in (1) with known LTI filters responses p(ni,n2) and g(ni,n2), we seek to estimate
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Figure 6: Plots (a) and (b) respectively illustrate the radially-averaged frequency response magnitudes
|P(f1, f2)| (solid line) and |Q(f1, f2)| (dotted line) for Floyd and Jarvis. The high-pass |P(f1, f2)| explains
the sharpened edges, while the high-pass |Q(f1, f2)| explains the “blue noise” behavior in the halftones.

x(n1,n2). Thus, under the linear model of [6, 7], inverse halftoning can be posed as a deconvolution
problem.

3.1 Deconvolution

Due to the interplay between inverse halftoning and deconvolution, the well-studied deconvolu-
tion literature [19-21] can be exploited to understand inverse halftoning as well. Deconvolution
algorithms conceptually consist of the following steps:

1. Operator inversion
Invert the convolution operator P to obtain a noisy estimate Z(n1,ns) of the input signal®

Z(ni,ne) := Pfly(nl, ng) = x(ny,ng) + Pflgv(nl,ng). (4)

2. Transform-domain shrinkage
Attenuate the colored noise P~1Qvy(ny,n2) by expressing Z(ni,n2) in terms of a chosen
orthonormal basis {bk}év;Ol and shrinking the k-th component with a scalar Ag, 0 < A < 1[22]

Bx o= (@ be)Akbr =Y ((2,be) + (P71 Qv,bi)) A b (5)
k k

to obtain the deconvolution estimate 7).

The ) . (x,bp)Ap by in (5) denotes the retained part of the signal z(ni,ng) that shrink-
age preserves from (4), while >, (P~1Q~,by) A by denotes the leaked part of the colored noise

LFor non-invertible P, we replace P! by its pseudo-inverse and z(n1,n2) by its orthogonal projection onto the
range of P in (4).
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P~1Qvy(n1,n2) that shrinkage fails to attenuate. Clearly, we should set A\, =~ 1 if the variance
o? :=E(|(P~1Qy, bk)|?) of the k-th colored noise component is small relative to the energy |(z, by)|?
of the corresponding signal component and set A\; = 0 otherwise. The shrinkage by A\ can also be
interpreted as a form of regularization for the deconvolution inverse problem [20].

The choice of transform domain to perform the shrinkage in deconvolution (see Step 2 above)
critically influences the MSE of the deconvolution estimate. An important fact is that for a given
transform domain, even with the best possible A.’s, the estimate Z,’s MSE is lower-bounded within
a factor of 2 by [9-11]

Zmin (|(x,bk>|2,az) . (6)
k

From (6), Z) can have small MSE only when most of the signal energy (= 3", |(z, bx)|?) and colored
noise energy (= Y., 07) is captured by just a few transform-domain coefficients — we term such a
representation economical — and when the energy-capturing coefficients for the signal and noise are
different. Otherwise, the Z) is either excessively noisy due to leaked noise components or distorted
due to lost signal components.

Traditionally, the Fourier domain (with sinusoidal by) is used to estimate z(n1, n2) from z(n1, na)
because it represents the colored noise P~1Qv(n1,n2) in (4) most economically. That is, among
orthonormal transforms, the Fourier transform captures the maximum colored noise energy using
a fixed number of coefficients because it diagonalizes convolution operators [23]. Fourier-based
deconvolution performs both the operator inversion and the shrinkage simultaneously in the Fourier

domain as 1

Xy =Y (f1, f2) P fo) Mot ™

with shrinkage
. P ) (5)
fi,fa * |p(f17f2)|2 + T(fl,f2)|Q(flaf2)|2

at the different frequencies. The Y (fi, f2) and X A (f1, f2) denote the 2-D Fourier transforms of
y(n1,n2) and the deconvolution estimate Zy:(n1,n2) respectively. The Y(fi, f2) in (8) is called the

reqularization term and is set appropriately during deconvolution [20]. For example, using the signal

to noise ratio to set T(f1, f2) = %}{3)‘;) in (7) yields the Wiener deconvolution estimate [24];

the I'(f1, f2) and X (f1, f2) denote the respective Fourier transforms of v(n1,n2) and x(ni,ne). The
m )\;17 f, 10 (7) constitutes the frequency response of the so-called deconvolution filter.
Fourier-based deconvolution suffers from the drawback that its estimates for images with sharp
edges are unsatisfactory either due to excessive noise or due to distortions such as blurring or ringing.
Since the energy due to the edge discontinuities spreads over many image Fourier coefficients, as
dictated by the MSE bound in (6), any estimate obtained via Fourier-domain shrinkage suffers from

a large MSE.

3.2 Inverse halftoning via Gaussian low-pass filtering (GLPF)

Conventionally, inverse halftoning has been performed using a finite impulse response (FIR) Gaus-
sian filter with coefficients g(ni,n2) oc exp[—(nf + n3)/(207)], where —4 < ny,ny < 4, and o
determines the bandwidth [8]. We can interpret inverse halftoning using GLPF as a naive Fourier-
domain deconvolution approach to inverse halftoning. This is substantiated by our observation that
the deconvolution filter m /\%7 s, (see (7) and (8)) constructed with the linear model filters P
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Figure 7: Comparison of radially-averaged frequency response magnitudes of the FIR GLPF (dashed line)
used for inverse halftoning in [8] with the response of the deconvolution filter (solid line) constructed with
filters P and Q for Floyd and with YT(f1, f2) fziﬁl'fz (see (7) and (8)). Ripples in the GLPF frequency

response result because the filter is truncated in space.

and Q for Floyd and with regularization Y(f1, f2) ]&741-,02 has a frequency response that closely
1 2

matches the frequency response of the GLPF (see Figure 7) [8]. The corresponding inverse halftone
estimates obtained using simulations are also nearly identical. Predictably, GLPF estimates suffer
from the same drawbacks that afflict any Fourier-based deconvolution estimate — excessive noise
(when oy is small) or significant blurring (when o, is large). Exploiting the insights provided by
the deconvolution perspective, we can infer that unsatisfactory GLPF estimates result because the
Fourier domain does not economically represent images with edges.

4 Background on Wavelets

In contrast to Fourier representations, wavelets provide economical representations for a diverse
class of signals including images with edges [11, 12].

4.1 Wavelet transform

The 2-D discrete wavelet transform (DWT) represents a spatially-continuous image x(t1,t2) €
L?([0,1)?) in terms of shifted versions of a low-pass scaling function ¢ and shifted and dilated
versions of prototype bandpass wavelet functions {y™H HL pHH} [11,25]. For special choices
of ¢ and ¢’s, the shifted and dilated functions ¢, x,(t1,t2) = 27¢(27t1 — k1,27ts — ko), and
%km = 200pb(29ty — ky, 20ty — ko) with b € B:= {LH, HL, HH}, where the LH, HL, and HH
denote the subbands of the wavelet decomposition, form an orthonormal basis. The j parameter
corresponds to the scale of the analysis, while the ki, ko parameters correspond to the location. A
finite-resolution approximation x”/(t1,ts) to x(t1,ts) is given by

J
J b b
2’ (t1,t2) = Z 8 jo,k1 k2 Do,k k2 (t1,t2) + Z Z Z wj,kl,kzwj,kl,kg (t1,t2),

kl,kQGZ beB j=jo k:l,kQEZ
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with scaling coefficients s, x, k, 1= (€, Pjy k1.ko) and wavelet coefficients w?vkh,@ = (x, ¢?,k1,k2>' The
parameter J controls the resolution of the wavelet reconstruction x”(t1,t2) of x(t1,2); in fact, the
Ly error ||z7 — |3 — 0 as J — oo.
The DWT can be extended to transform sampled images as well. Consider, for example, a
sampled image obtained by sampling x(¢1, t2) uniformly as
no+1 ni+1
x(nl,ng) =N VN N I(tl,fg) dtl dtg, 0 S ni,ny S \/N— 1. (9)

n2 n1

vN VN

For such N-pixel images, the N wavelet coefficients can be efficiently computed in O(N) operations
using a filter bank consisting of low-pass filters, high-pass filters, and decimators [11].

Purely for notational convenience, we henceforth refer to the location parameters ki, ko by k
and do not explicitly specify the different wavelet subbands: w?,khkz and 7/’?,1@1,1@2 for b € B :=
{LH,HL,HH} will be referred to simply as w;; and ;. Further, we discuss the processing of
only the wavelet coefficients, but all steps are replicated on the scaling coefficients as well.

4.2 Economy of wavelet representations

Wayvelets provide economical representations for images in smoothness spaces such as Besov spaces
[9,12]. Roughly speaking, a Besov space Bj , contains functions with “s derivatives in Lj,,” with ¢
measuring finer smoothness distinctions [12]. Besov spaces with different s, p, and ¢ characterize
many classes of functions; for example, Bioo contains piece-wise polynomial images [26]. If a
continuous-space image x(t1,t2) € By, s > % —1,1 < p,g < oo, then the DWT coefficients
computed using the image samples (see (9)) satisfies (for all N)

1
gy L
1 12 7\’
ﬁ Z2Jq( +1-2)) <Z|wj,k|p> < 00, (10)
k

J

assuming the underlying wavelet basis functions are sufficiently smooth [10, 17, 27].2 From (10), we
can infer that the wavelet coefficients of Besov space images decay exponentially fast with increasing
scale j. Further, among all orthogonal transforms, the wavelet transform captures the maximum
(within a constant factor) signal energy using a fixed number of coefficients for the worst-case Besov
space signal [9].

4.3 Wavelet-based signal estimation

The wavelet transform’s economical representations have been exploited in many fields [11]. For
example, wavelets provide an effective solution to the problem of estimating signal samples x(ni, ng)
from additive white Gaussian noise (AWGN) corrupted observations [17, 27, 28]

Z(n1,n2) = z(ny,n2) + v(n1, na), (11)

2The traditional Besov space characterizing equation in [10,17,27] assumes Lo-normalized wavelet coefficients
wj,; that is, 35, |w; k)? = ||z(t1, t2)||3. Because the w; used in (10) are computed using signal samples z(n1, n2)

that satisfy > , Jwjk)? = Dy g |(101, n2)|* = N||z(t1,t2)||3, a normalization factor of VN is required.
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with vy(n1,n2) denoting AWGN samples of variance o2. Such a setup is similar to estimating

x(n1,nz2) from (4) but with P~1Q equal to identity. Simple shrinkage in the wavelet domain with
scalars AW can provide excellent estimates of z(nj,ng). This shrinkage is illustrated by (5) with
wavelet basis functions as by’s and with identity P! Q. For example, hard thresholding shrinks the
wavelet coefficients of Z(n1, ne) with scalars

{ 1, if |'[Ej,k| > pPioj,

. (12)
0, if [wj k| < pjoy,

w —
Ak =

with @j == (T , k), 032 the noise variance at wavelet scale j, and p; the scale-dependent threshold
factor (for examples, see [11, p. 442]) . When the pixels x(ni,ng) arise from a continuous-space
image z(t1,t2) € B, , with s > % —1and 1 <p,q < oo, hard thresholding (with judiciously chosen

p;j [28]) provides estimates whose MSE-per-pixel decays at least as fast as IV 1 as N — 0o [17,27].
Further, no estimator can achieve a better error decay rate for every x(t1,t2) € B, ,. If the threshold
factor p; is chosen to be scale-independent, then the MSE decay rate is decelerated by an additional
log N factor.

In practice, the Wavelet-domain Wiener Filter (WWF) improves on the MSE performance
of hard thresholding by employing Wiener estimation on each wavelet coefficient [29,30]. WWF
chooses

2
AV = (13)
P Jwil? + o
However, the coeflicients w; i, required to construct the )\Wk are unknown. Hence, a “pilot” estimate
of the unknown signal is first computed using hard thresholdlng Then, using AV constructed with
the pilot estimate’s wavelet coefficients in (13), WWTF shrinkage is performed. Sufficiently different
wavelet basis functions must be used in the two steps [29, 30].

5 Wavelet-based Inverse Halftoning Via Deconvolution (WInHD)

To simultaneously exploit the economy of wavelet representations and our realization about the
interplay between inverse halftoning and deconvolution, we propose the WInHD algorithm [16].
WInHD adopts the wavelet-based deconvolution approach of [10] to perform inverse halftoning.

5.1 WInHD algorithm

WInHD employs scalar shrinkage in the wavelet domain to perform inverse halftoning as follows
(see Figure 2):.

1. Operator inversion
As in (4), obtain a noisy estimate Z(n1,n2) of the input image by inverting P.

2. Wavelet-domain shrinkage
Employ scalar shrinkage in the wavelet domain to attenuate the noise P~1Qy(nj,ng) in
Z(n1,n2) and obtain the WInHD estimate Zyw(n1,ng) as follows:

(a) Compute the DWT of the noisy  to obtain w; := (T ,¢;x).
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(b) Shrink the noisy w;; with scalars AY, (using (12) or (13)) to obtain @; g\ 1= Wk AY).
The colored noise variance at each scale j determining the )\}Vk is given by 0']2 =

E(|(P1 Q7 u)[*)-

(c) Compute the inverse DWT with the shrunk @;. v to obtain the WInHD estimate
’.T\Aw (’I”Lhnz).

For error diffusion systems, P! is an FIR filter. Hence, the noisy estimate Z(ny,ns) obtained
in Step 1 using P! is well-defined. The subsequent wavelet-domain shrinkage in Step 2 effectively
extracts the few dominant wavelet components of the desired gray-scale image x(n1,n2) from the
noisy Z(n1,nz2) because the residual noise P! Q~(n1,n2) corrupting the wavelet components is
not excessive.

WInHD can be easily adapted to different error diffusion techniques simply by choosing the
gain K recommended by [6] and the error filter response h(ni,ng) for the target error diffusion
technique. K and h(ni,ng) determine the filters P and Q (see (2) and (3)) required to perform
WInHD. In contrast, the gradient-based inverse halftoning method [18] adapts to a given error
diffusion technique by employing a set of smoothing filters that need to be designed carefully.

5.2 Asymptotic performance of WInHD

With advances in technology, the spatial resolution of digital images (controlled by the number of
pixels N) has been steadily increasing. Hence any inverse halftoning algorithm should not only
perform well at a fixed resolution but should also guarantee good performances at higher spatial
resolutions. In this section, under some assumed conditions, we deduce the rate at which the
per-pixel MSE for WInHD decays as number of pixels N — oo.

Invoking established results in wavelet-based image estimation in Gaussian noise, we prove the
following proposition in Appendix A about the asymptotic performance of WInHD.

Proposition 1 Let xz(n1,ng2) be a N-pizel gray-scale image obtained as in (9) by uniformly sam-
pling a continuous-space image x(t1,t2) € By , with t1,ty € [0,1), s > % -1, and 1 < p,q, < 0.
Let p(ni,n92) and q(n1,n2) denote known filter impulse responses that are invariant with N and
with Fourier transform magnitudes |P(f1, f2)| > € > 0 and |Q(f1, f2)| < oo. Let y(n1,n2) be obser-
vations obtained as in (1) with y(ni,ng) zero-mean AWGN samples with variance o*. Then, the
per-pizel MSE of the WInHD estimate T(ni,ns2) obtained from y(ny,n2) using hard thresholding
behaves as

1 ~ =s
NIE (Z |Z(n1, n2) —x(nl,n2)|2> < C N+, N — oo, (14)

ni,n2

with constant C' > 0 independent of N.

The above proposition affirms that the per-pixel MSE of the WInHD estimate decays as N ST with
increasing spatial resolution (N — oo) under the mild assumptions discussed below.

The central assumption in Proposition 1 is that the linear model (1) for error diffusion is
accurate. This is well-substantiated in [6, 7]. The conditions |P(f1, f2)| > € > 0 and |Q(f1, f2)] < oo
respectively ensure that P is invertible and that the variance of the colored noise Qvy(ni,ng) is
bounded. We have verified that for common error diffusion halftoning techniques such as Floyd
and Jarvis, the filters P and Q recommended by the linear model of Kite et al. satisfy these
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(a) Floyd halftone (b) Gradient estimate [18] (¢)WInHD estimate

Figure 8: Close-ups (128 x 128 pixels) of (a) Floyd halftone, (b) Gradient estimate, and (c¢) WInHD

estimate.

conditions (see Figure 6). The final assumption is that the noise y(nj,n2) is Gaussian; this is
required to invoke the established results on the asymptotics of wavelet-based estimators [17].
However, recently, wavelet-domain thresholding has been shown to be optimal for many other noise
distributions as well [31,32]. Hence the noise Gaussianity assumption in Proposition 1 could be
relaxed.

Often, gray-scale digital images are corrupted with some noise before being subjected to halfton-
ing. For example, sensor noise corrupts images captured by charged coupled device (CCD) based
digital cameras. In such cases as well, WInHD can effectively estimate the noise-free gray-scale
image with an MSE decay rate of N ST asin Proposition 1. Further, WInHD’s MSE decay rate
can be shown to be optimal. The noise-free gray-scale image and resulting halftone can be related
using the linear model of [6, 7] as

y(ni,n2) = P [z(n1,n2) + B(n1,n2)] + Qy(n1, n2), (15)

with B8(n1,ng) denoting the noise corrupting the gray-scale image before halftoning. If the 8(n,n2)
is AWGN with non-zero variance, then we can easily infer that the residual noise after inverting
P in Step 1 of WInHD can be analyzed like white noise because its variance is bounded but non-
zero [10]. Hence we can invoke well-established results on the performance of wavelet-based signal
estimation in the presence of white noise [17,27, 28] to conclude that no estimator can achieve a
better error decay rate than WInHD for every Besov space image. Thus, WInHD is an optimal
estimator for inverse halftoning error-diffused halftones of noisy images.

6 Results

We illustrate WInHD’s performance using 512 x 512-pixel Lena and Peppers test images halftoned
using the Floyd algorithm [4] (see Figure 3 and 8). All WInHD estimates and software are available
at www.dsp.rice.edu/software. We set the gain K = 2.03, as calculated for Floyd in [6, 7], and
use the Floyd error filter response h(ni,n2) (see Figure 5) to characterize the impulse responses
p(ni,ne2) and g(ni,ng). Inverting the operator P (Step 2) requires O(N) operations and memory
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Table 1: PSNR and computational complexity of inverse halftoning algorithms (N pixels).

Inverse halftoning PSNR (dB) Computational
algorithm Lena Peppers complexity
Gaussian [8] 28.6 27.6 O(N)
Kernel [2] 32.0 30.2 O(N)
Gradient [18] 31.3 31.4 O(N)
Wavelet denoising [15] 31.7 30.7 O(N log N)
WInHD 32.1 312 O(N)

for a N-pixel image since P~! is FIR. To perform the wavelet-domain shrinkage (Step 2), we choose
the WWF because it yields better estimates compared to schemes such as hard thresholding.

Estimates obtained by shrinking DWT coefficients are not shift-invariant; that is, translations of
y(n1,ng) will result in different estimates. Hence, we exploit the complex wavelet transform (CWT)
instead of the usual DWT to perform the WWEF. The CWT expands images in terms of shifted and
dilated versions of complex-valued basis functions instead of the real-valued basis functions used by
the DWT [33,34]; the expansion coefficients are also complex-valued. Wavelet-domain shrinkage
using WWF on the CWT coefficient magnitudes yields significantly improved near shift-invariant
estimates with just O(NN) operations and memory. (The redundant, shift-invariant DWT can also
be used instead of the CWT to obtain shift-invariant estimates [11], but the resulting WInHD
algorithm requires O(NN log N) operations and memory.) The standard deviation of the noise
~(n1,n2), which is required during wavelet shrinkage, is calculated using the standard deviation of
y(n1,n2)’s finest scale CWT coefficients.

Figures 3 and 8 compares the WInHD estimate with the multiscale gradient-based estimate [18]
for the Lena image. We quantify the WInHD’s performance by measuring the peak signal-to-noise
ratio PSNR := 201og;, 5“;253‘?; (for 512 x 512-pixel images with gray levels € [0,1,...,255]) with
Z(n1,ng) the estimate. Table 1 summarizes the PSNR performance and computational complexity
of WInHD compared to published results for inverse halftoning with Gaussian filtering [8], kernel
estimation [2], gradient estimation [18], and wavelet denoising with edge-detection [15]. We can see
that WInHD is competitive with the best published results.

The WInHD estimate yields competitive visual performance as well. We quantify visual perfor-
mance using two metrics: weighted SNR (WSNR) [35, 36] and the Universal Image Quality Index
(UIQI) [37]. Both metrics were computed using the halftoning toolbox of [38]. The WSNR is
obtained by weighting the SNR in the frequency domain according to a linear model of the human
visual system [35, 36]. The WSNR numbers in Table 2 are calculated at a spatial Nyquist frequency
of 60 cycles/degree. The recently proposed UIQI metric of Wang et al. effectively models image
distortion with a combination of correlation loss, luminance distortion, and contrast distortion [37];
UIQI € [—1,1] with larger values implying better image quality. For the Lena image, WInHD’s
performance in terms of both the visual metrics is competitive with the gradient estimate’s perfor-
mance (see Table 2).
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Table 2: Visual metrics for inverse halftoned estimates of Lena.

Algorithm | WSNR (dB) | UIQI
Gradient [18] 34.0 0.62
WInHD 35.9 0.62

7 Conclusions

Using the linear error diffusion model of [6, 7], we have demonstrated that inverse halftoning can
be posed as a deconvolution problem in the presence of colored noise. Exploiting this new perspec-
tive, we have proposed the simple Wavelet-based Inverse Halftoning via Deconvolution (WInHD)
algorithm based on wavelet-based deconvolution to perform inverse halftoning. Since WInHD is
model-based, it is easily tunable to the different error diffusion halftoning techniques. WInHD
yields state-of-the-art performance in the MSE sense and visually.

WInHD also enjoys desirable theoretical properties under certain mild conditions. For images
in a Besov space, WInHD estimate’s MSE is guaranteed to decay rapidly as the spatial resolution
of the input gray-scale image increases. Further, if the gray-scale image lies in a Besov space and is
noisy before halftoning, then WInHD’s MSE decay rate cannot be improved upon by any estimator.

We have assumed a priori knowledge of the error diffusion filter in this paper. However, the error
diffusion filter is not always known. Under such circumstances, the error diffusion filter coefficients
could be estimated by integrating adaptive techniques such as the one proposed by Wong [39] into
our algorithm. However, this remains a topic of future study.

To facilitate efficient hardware implementation, in addition to requiring minimal memory and
computations, an inverse halftoning algorithm should also be compatible with fixed-point digital
signal processors. For example, the gradient-based algorithm [18] is optimized for hardware imple-
mentation while still obtaining good inverse halftoning results. Since our focus in this paper has
been primarily theoretical, we have not specifically addressed any hardware optimization issues.
The design of a hardware-compatible inverse halftoning algorithm based on WInHD is a topic of
interesting future study.

A Decay Rate of WInHD’s MSE

We deduce the asymptotic performance of WInHD as claimed in Proposition 1.

Instead of analyzing the problem of estimating xz(nj,n2) from y(ni,n2), we can equivalently
analyze the estimation of x(n1,n2) from the noisy observation Z(n1,ng) obtained after inverting P
(see (4)). The reduction is equivalent because P(f1, f2) is known and invertible (since |P(f1, f2)| >
€>0)3

The frequency components of the colored noise P~1Qv(ny,ns) corrupting the Z(ny,ns) in (4)

is given by % These frequency components are independent and Gaussian because

the Fourier transform diagonalizes convolution operators. Since |P(f1, f2)| is strictly non-zero and

|Q(f1, f2)] is bounded, the variance of %W is uniformly bounded — say with variance ¢2

3Since the filter P! is FIR for error diffusion systems, boundary effects are negligible asymptotically because
only a finite number of boundary pixels are corrupted.
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— at all frequencies.

Because the estimation error due to wavelet-domain hard thresholding is monotone with re-
spect to noise variance [10], the error in estimating x(ni,ns) from (4) using wavelet-domain hard
thresholding is less than the error in estimating x(n1,n2) observed in white noise as in (11) but
with variance ¢2. Hence the per-pixel MSE in estimating x(n1,n2) from (4) can be bounded with

the decay rate N1 established for the white noise setup (see Section 4.3) to yield (14) with a
constant C' > 0 independent of N [27,28]. O
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