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Welcome to the inaugural issue of Rejecta Mathematica! Thank you for joining us for
what we hope will be a unique and interesting experiment. For those unfamiliar with our
mission, Rejecta Mathematica is an open access, online journal that publishes only papers
that have been rejected from peer-reviewed journals in the mathematical sciences. In addi-
tion, every paper appearing in Rejecta Mathematica includes an open letter from its authors
discussing the paper’s original review process, disclosing any known flaws in the paper, and
stating the case for the paper’s value to the community.

Since starting this endeavor, the questions we’ve been asked most often are “Why are
you doing this?” and “Is it a joke?” While we are not above admitting that we have had
a few good laughs in this process, we hope that this issue will serve as definitive proof that
Rejecta Mathematica is not a joke. Despite the central role that peer review (and even
rejection) must play in the scientific process [1], we believe there are several reasons why this
project can make a positive and valuable contribution to the mathematical sciences research
community.

First, there is ample evidence that in the traditional review process, significant (even
Nobel prize-winning) research is occasionally overlooked and groundbreaking work is some-
times actively shunned [2–4]. Perhaps this is most dramatically illustrated in the fact that
at least “36 future Nobel Laureates encountered resistance on [the] part of scientific journal
editors or referees to manuscripts that dealt with discoveries that on [a] later date would
assure them the Nobel Prize” [5]. While it would be presumptuous for us to assume that we
can spot significant work that others may have missed, we can provide a venue to introduce
rejected work to the community and increase the chances that its value will be appreciated
sooner rather than later.

Second, there is also evidence that a research community can derive value from a central-
ized repository of rejected papers, even when (and perhaps especially when) the results are
either incorrect or not significant enough to warrant consideration for a major international
prize. Rejecta Mathematica can benefit authors looking for feedback on their work, wanting
to warn the community against false starts (i.e., the classic “null results” that never see the
light of day, only to be repeated by others) [6, 7], or wanting to illuminate the occasional
vagaries of the peer review process to enhance accountability and scientific integrity [8]. Our
journal can also benefit readers who want access to “minor results” that may be useful but
not publishable in isolation. Indeed, Rejecta Mathematica has existed in folklore for many
years as a fictitious place to send papers that were never to see the light of day, and the
concept of a formal repository for rejected papers hoping to be discovered and revived (called
Rejuvenatable Mathematics) has also been proposed [9].

While such a project as Rejecta Mathematica would have been impracticable in the pre-
internet age, the flood of resources available today begs another oft-posed question: “Why do
we need a new journal? Isn’t this what a preprint server (like the arXiv), a blog, or a personal
website is for?” We believe that a central collection of articles that have been selected for
their potential interest to the community will increase their visibility beyond what could be
achieved through a general preprint server or personal website. We also believe that the
commentary and advocacy by the authors will increase the value of the papers beyond what
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would exist from the appearance of the paper alone. Finally, we believe that the availability
of thoughtful technical discussion (via Rejecta Mathematica “correspondences” following up
on previously published articles) has the potential to generate more valuable interaction than
the immediate commentary generally available on a blog. There is no doubt, however, that
blogs and online archives can also play a significant role in advocating for rejected papers.

Finally, we would be remiss not to mention that being researchers ourselves, at some level
we simply wanted to conduct an experiment. What started as a fleeting idea around the
lunch table (discussing one of our own rejected papers) turned into the type of inquiry that
fuels even the most serious of studies: if we build Rejecta Mathematica and ask for papers,
what will happen? Will we get any papers, and if so, will they all be the delusional output
of mathematical cranks? (This has been a common conjecture.)

Other questions concern our editorial policies. Should we simply publish every article we
receive, and if not, how should we evaluate the submissions? After careful consideration, we
have settled on an editorial process that includes no technical peer review (hence our slogan
“Caveat Emptor”). Rather, we will rely on the technical review provided by the journal from
which the paper was originally rejected and focus instead on selecting papers based on their
apparent potential interest to researchers in the mathematical sciences. Admittedly, and
perhaps necessarily in a journal of this scope, the concept of “potential interest” encompasses
a broad set of loosely defined criteria. Ultimately, we will try to choose papers that allow
some opportunity for learning. For example, we do not see much value to the community in
publishing papers that were rejected solely for their incomprehensibility.

The open letter plays a major part in our decision process, as we view its role in a Rejecta
Mathematica article as being at least as important as the technical content of the research
paper. The open letters are where the authors can both tell the history of the paper and
convey the lessons learned from the rejection. Undoubtedly, many open letters will provide
a frank commentary on the peer-review process. Some may even be controversial. At the
very least, they should help others benefit from the (technical and nontechnical) mistakes of
their peers. To address the original question, there have indeed been papers rejected from
Rejecta Mathematica.

We are delighted to say that the content of this first issue runs the gamut of genres
included in our mission: minor or traditionally unpublishable results, non-traditional ideas
and proof techniques, misunderstood genius, results based on questionable assumptions, and
controversial papers and open letters. We are also pleased that the papers span several areas
of the mathematical sciences, including pure mathematics, applied mathematics, theoretical
physics, and engineering. We hope that you enjoy the issue with as much good humor and
intellectual stimulation as we have encountered in putting it together. We welcome feedback,
future submissions, and support for the Rejecta Mathematica mission through our website:
math.rejecta.org.

Michael Wakin — Christopher Rozell — Mark Davenport — Jason Laska
editors@rejecta.org
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An open letter concerning

Subspaces that Minimize the Condition Number of a

Matrix

Siddharth Joshi Stephen Boyd

This article poses and answers the following question: How do you choose a subspace of given
dimension that minimizes the condition number of a given matrix on that subspace? Part of the
answer is a bit surprising (at least to us): When the subspace dimension is no more than half the
size of the matrix, a subspace can be found on which the matrix has condition number one.

We think our paper makes it clear that we consider our result simple, but interesting and not
obvious. We certainly make no claims as to its depth, or its potential applications. It is not in the
literature, and does not follow in any direct or simple way from existing results. In other words, it
is, as far as we know, new.

The manuscript was rejected by two journals. The first rejection was based on the reviewers
and editor noting that someone had written a paper that seemed to cover similar material. But a
cursory reading of that paper, and ours, show that while the other paper shared a few key words
with ours, the results were in no way related. On the positive side, one reviewer suggested a
simplification of our proof, which we gladly used in our revision, which was also rejected.

We then submitted the article to another journal. In this case, the editor apparently did not
even understand the result, which is stated very clearly, in completely standard, and elementary,
mathematical language. Moreover, he insisted that we describe an application, so we added a
simple application involving an ellipsoid intersected with a subspace. It was rejected.
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Subspaces that Minimize the Condition Number of a
Matrix

Siddharth Joshi Stephen Boyd∗

Abstract

We define the condition number of a nonsingular matrix on a subspace, and consider
the problem of finding a subspace of given dimension that minimizes the condition
number of a given matrix. We give a general solution to this problem, and show in
particular that when the given dimension is less than half the dimension of the matrix,
a subspace can be found on which the condition number of the matrix is one.

1 The problem

Suppose A ∈ Rn×n and V ⊆ Rn is a subspace with dimV = k ≥ 1. We define the maximum
gain (minimum gain) of A on V , as

Gmax = sup
x∈V, x6=0

‖Ax‖
‖x‖ , Gmin = inf

x∈V, x6=0

‖Ax‖
‖x‖ ,

respectively, where ‖ ‖ denotes the Euclidean norm. When A is nonsingular, we define its
condition number on the subspace V as

κV(A) = Gmax/Gmin.

The condition number of A on any one-dimensional subspace is 1, and its condition number
on V = Rn is the (usual) condition number of A, which we denote κ(A). The condition
number on any subspace is between 1 and κ(A). If κV(A) = 1, we say that A is isotropic on
V , since its gain ‖Ax‖/‖x‖ is the same for any nonzero vector x ∈ V .

In this note we address the following problem: Given a nonsingular matrix A ∈ Rn×n, and
k ∈ {1, . . . , n}, find a subspace V ⊆ Rn of dimension k which minimizes κV(A). The number
κV(A) is a measure of the anisotropy of the linear function induced by A, restricted to the
subspace V , so our problem is to find a subspace of dimension k on which A is maximally
isotropic.

∗The authors are with the department of Electrical Engineering at Stanford University. Email addresses:
Siddharth Joshi: sidj@stanford.edu, Stephen Boyd: boyd@stanford.edu.
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We will show that the minimum possible condition number of A, on a subspace of di-
mension k, is given by

inf
V : dimV=k

κV(A) = max
(
σn−k+1

σk

, 1
)

=

{
1 k ≤ dn/2e,
σn−k+1/σk k > dn/2e, (1)

where σ1 ≥ · · · ≥ σn > 0 are the singular values of A. (The infimum is over all subspaces of
Rn of dimension k.) This means, in particular, that for k ≤ dn/2e, we can find a subspace
of dimension k on which A is isotropic.

There are many classical results that identify a subspace of a given dimension that min-
imizes or maximizes some quantity that depends on the subspace and matrix. For example,
the Courant-Fischer theorem tells us that the minimum value of Gmax, over all subspaces
of dimension k, is σn−k+1, and the maximum value of Gmin, over all subspaces of dimension
k, is σk. For these and similar results, see, e.g., [3, §4.2] or [1]. Also, the idea of condition
number of a matrix restricted to a particular subspace can be seen in [2].

We can give a geometric application (or interpretation) of our problem. We are given
an ellipsoid E = {z | ‖Az‖ ≤ 1} in Rn, where A ∈ Rn×n is nonsingular. Our goal is to
find a k dimensional subspace V so that the ellipsoid V ∩ E is as spherical as possible, i.e.,
has minimum eccentricity. (The eccentricity of V ∩ E is defined as the ratio of its maximum
semi-axis length to its minimum semi-axis length, which is exactly κV(A).) The solution is to
choose V that minimizes the condition number of A on V . Our result (1) can be interpreted
in this geometric setting. For example, if k < dn/2e, we can always find a subspace of
dimension k for which V ∩E is perfectly spherical, i.e., a ball. As a very simple special case,
we see that for any ellipsoid in R3, there is a plane that intersects it in a ball. Our general
result (1) can be considered a generalization of this simple fact.

2 The solution

Suppose Q and Z are n× n orthogonal matrices, i.e., QTQ = ZTZ = I. Then we have

κV(QAZ) = κW(A),

where W = ZV = {Zv | v ∈ V}. It follows that

inf
V : dimV=k

κV(A) = inf
V : dimV=k

κV(QAZ),

since the first orthogonal matrix Q has no effect, and the second orthogonal matrix Z simply
changes the parametrization of subspaces of dimension k.

Now let A = UΣV T be a singular value decomposition of A, i.e., U and V are orthogonal,
and Σ = diag(σ1, . . . , σn). Our observation above, with Q = UT , Z = V , shows that

inf
V : dimV=k

κV(A) = inf
V : dimV=k

κV(Σ).
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So we can just as well solve the problem for the diagonal matrix Σ. (To reconstruct a
subspace of dimension k on which A has least condition number, we find a subspace of
dimension k for which Σ has least condition number, and multiply it by V .)

Now our problem is to find a subspace V of dimension k which minimizes κV(Σ). We will
show that

inf
V : dimV=k

κV(Σ) = max
(
σn−k+1

σk

, 1
)

=

{
1 k ≤ dn/2e,
σn−k+1/σk k > dn/2e, (2)

Let {e1, . . . , en} be the standard basis for Rn, i.e., for i = 1, . . . , n, eij = 0 if i 6= j and
eij = 1 otherwise.

We first give a simple result. Suppose i < j, and let σ satisfy σi ≥ σ ≥ σj. Then
there is a unit vector z ∈ span{ei, ej} for which ‖Σz‖ = σ. This can be seen several ways.
For example, we can rotate a unit vector z from ei towards ej. The norm ‖Σz‖ varies
continuously from σi to σj, and therefore has the value σ at some rotation angle. We can
easily construct such a z. If σi = σj, we can take z = ei or z = ej. If σi > σj, we can take

z =
(σ2 − σ2

j )1/2ei + (σ2
i − σ2)1/2ej

(σ2
i − σ2

j )1/2
.

It is easily verified that ‖z‖ = 1 and ‖Σz‖ = σ.

2.1 Case 1: k ≤ dn/2e
To establish (2), we will construct a subspace V∗ of dimension k, with κV∗(Σ) = 1. We will
construct an orthonormal basis {z0, z1, . . . , zk−1} for V∗. We start with z0 = edn/2e. Note
that ‖Σz0‖ = σdn/2e.

Next, we choose a unit vector z1 ∈ span{edn/2e−1, ed(n+1)/2e+1} that satisfies ‖Σz1‖ =
σdn/2e. We can do this using our simple result above, noting that

σdn/2e−1 ≥ σdn/2e ≥ σd(n+1)/2e+1.

We note that z1 ⊥ z0 and Σz1 ⊥ Σz0.
We continue the construction, taking z2 as any unit vector

z2 ∈ span{edn/2e−2, ed(n+1)/2e+2}
that satisfies ‖Σz2‖ = σdn/2e. This continues, until we have unit vectors z0, . . . , zk−1. These
vectors are mutually orthogonal, since each one is in the span of two standard basis vectors,
and these pairs of standard basis vectors are disjoint. Since Σ is a diagonal matrix, the
vectors Σz0, . . . ,Σzk−1 are mutually orthogonal.

We now show that κV∗(Σ) = 1. For any nonzero vector b ∈ V∗, the gain of Σ in the
direction of b, ‖Σb‖/‖b‖ = σdn/2e, because the gain of Σ in the direction of any unit vector
in the orthonormal basis {z0, . . . , zk−1} of V∗ is σdn/2e. Thus Gmax = Gmin = σdn/2e, and
therefore κV∗(Σ) = 1.
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2.2 Case II: k > dn/2e
To establish (2), we first construct a subspace V∗ of dimension k, with κV∗(Σ) = σn−k+1/σk,
and then show that for any subspace V of dimension k, κV(Σ) ≥ κV∗(Σ).

We will construct an orthonormal basis for V∗. We start with the 2k − n vectors
{en−k+1, en−k, . . . , ek−1, ek}. We will choose n− k unit vectors, z1, . . . , zn−k, such that

{z1, . . . , zn−k, en−k+1, . . . , ek−1, ek}
forms an orthonormal basis for V∗. The n − k unit vectors z1, . . . , zn−k will be chosen in
span{e1, . . . , en−k, ek+1, . . . , en}, and will therefore be orthogonal to {en−k+1, . . . , ek}.

Choose a unit vector z1 ∈ span{e1, en}, satisfying ‖Σz1‖ = σk. We can do this using
the simple result given earlier, since σ1 ≥ σk ≥ σn. We note that z1 ⊥ ej, and Σz1 ⊥ Σej,
j = n− k + 1, . . . , k.

We continue the construction, choosing a unit vector z2 ∈ span{e2, en−1}, satisfying
‖Σz2‖ = σk. This continues, until we have chosen a unit vector zn−k in span{en−k, ek+1},
satisfying ‖Σzn−k‖ = σk.

The vectors z1, . . . , zn−k are mutually orthogonal, since each one is in the span of two
standard basis vectors, and these pairs of standard basis vectors are disjoint. Also zi ⊥
ej for i = 1, . . . , n − k and j = n − k + 1, . . . , k, since each vector zi is in the span of
two standard basis vectors which are not in the set {en−k+1, . . . , ek}. Thus {z1, . . . , zn−k,
en−k+1, en−k, . . . , ek−1, ek} forms an orthonormal basis for V∗. Similarly, since Σ is a diagonal
matrix, the vectors Σz1, . . . ,Σzn−k,Σen−k+1, . . . ,Σek are mutually orthogonal.

We now show κV∗(Σ) = σn−k+1/σk. Let b any nonzero vector in V∗, say,

b = β1z1 + · · ·+ βn−kzn−k + βn−k+1en−k+1 + · · ·+ βkek.

The gain of Σ in the direction b is

‖Σb‖
‖b‖ =

(∑n−k
i=1 β

2
i ‖Σzi‖2 +

∑k
j=n−k+1 β

2
j ‖Σej‖2∑n−k

i=1 β
2
i ‖zi‖2 +

∑k
j=n−k+1 β

2
j ‖ej‖2

)1/2

=

(∑n−k
i=1 β

2
i σ

2
k +

∑k
j=n−k+1 β

2
jσ

2
j∑n

i=1 β
2
i

)1/2

,

and therefore σn−k+1 ≥ ‖Σb‖/‖b‖ ≥ σk. For b = en−k+1, ‖Σb‖/‖b‖ = σn−k+1, so Gmax =
σn−k+1; for b = ek, we have ‖Σb‖/‖b‖ = σk, so Gmin = σk. It follows that κV∗(Σ) =
σn−k+1/σk.

Now we will show that for any subspace V of dimension k, κV(Σ) ≥ σn−k+1/σk. By the
Courant-Fischer theorem, for any subspace V of dimension k, Gmax ≥ σn−k+1 and Gmin ≤ σk.
It follows that κV(Σ) = Gmax/Gmin ≥ σn−k+1/σk. This establishes (2), and therefore (1).
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A note from the Rejecta Mathematica editorial board regarding

Automatic CounTilings by Doron Zeilberger

The following paper was submitted by Doron Zeilberger in response to an invitation to con-
tribute a paper to the inaugural issue of Rejecta Mathematica. In lieu of a traditional open letter,
we would like to refer the reader to Prof. Zeilberger’s website:

http://www.math.rutgers.edu/∼zeilberg/mamarim/mamarimhtml/tilings.html

As a brief summary, this paper considers the problem of computing the number of ways in
which a k× n rectangle can be covered by a given set of tiles. The paper in fact describes a Maple
program – available at the website above – which will tackle the problem for all n, given any k and
any set of allowable tiles. What was once a problem that would have to be tackled on a case-by-case
basis is approached with a unified treatment that relies on a computer to discover the appropriate
“structure theorems.” As Prof. Zeilberger claims on his website, “what is so nice about it is that
everything is done by machine: the combinatorics, the algebra, and the analysis.”

The rejection history of this paper is well-documented on Prof. Zeilberger’s website. A primary
source of dispute in the original referee review was whether Prof. Zeilberger’s algorithm alone
constituted a significant, original mathematical contribution. Prof. Zeilberger includes the original
review, which he describes as “narrow-minded and ignorant”, offers his own reply, and expresses
his opinion about the “flawed” editorial policies of the rejecting journal.

For full context, software code, and examples, the interested reader is invited to read both the
paper and the website.

Rejecta Mathematica Editors
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Automatic CounTilings

Doron ZEILBERGER1

I Have a Dream

One day it would be possible to write in English, or in an English-like super-high-level programming
language, the following command:

Write a Maple program that inputs an arbitrary positive integer k, a symbol n, and

an arbitrary set T of tiles, as well as a symbol t, and outputs the rational func-

tion of t whose Maclaurin series’s coefficient of tn is the number of different tilings

of a k by n rectangle by the tiles of T.

But Yesterday’s Dream Came To Pass

This day hasn’t arrived yet, so I had to spend a few weeks writing such a program myself. This is
the human-generated Maple package TILINGS accompanying this article.

But, this is already a great step forward. Once I wrote the program, my beloved servant, Shalosh
B. Ekhad, can solve (potentially) infinitely many enumeration problems, completely rigorously, for
enumerating tilings of rectangles of arbitrary width and using an arbitrary set of tiles (the tiles even
do not have to be connected).

Traditionally, a human would have had to tackle each specific width (k) and each specific set of tiles
(T ), (even the set consisting of the two dimers, the vertical and horizontal 1 by 2 rectangles) one
at a time. He or she would have had to figure out the combinatorics of the situation, establish a
“structure theorem”, then deduce from this a set of equations, and finally, solve this set of equations
(this very last part, starting in the seventies, was possibly aided by Maple or Mathematica). Of
course, the human will only be able to do it for very small k, and very simple sets of tiles, since very
soon the structure theorem, and consequently the set of equations, would be too hard to derive by
hand, let alone solve.

Once the meta-program above would be realized, I would become superfluous. But even at the
present level, the human-made Maple program TILINGS can generate, in principle, infinitely many
articles, and Ph.D. theses, proving general, rigorous and interesting results. Except for very simple
cases, of course, the complexity of the proofs and results are beyond mere humans.

The Simplest Not-Completely-Trivial Example

Let a(n) be the number of ways of tiling a 2×n rectangle using the horizontal and vertical dominoes,
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i.e. the set of tiles is:
XX ,

X
X

.

Let A(n) be the set of tilings of a 2 × n rectangular board by the above two tiles. Of course, if
n = 0, then A(n) consists of one tiling only: the empty tiling, but if n > 0 then there are two
cases to consider, regarding the bottom-left cell.

Case I: It participates in the vertical tile, in which case the board looks like

10000 . . . 0
10000 . . . 0 ,

where 1 means an occupied cell and 0 means a still-untiled cell.

Case II: It participates in the horizontal tile, in which case the board looks like

00000 . . . 0
11000 . . . 0 .

Now the first case is clearly “isomorphic” to A(n− 1), and the isomorphism is obtained by “chop
the 1’s” (i.e. remove the vertical tile), reducing the problem to that of tiling a 2 × (n − 1) board.
But Case II requires us to introduce a new auxiliary set, let’s call it B(n), that of tiling a “jagged”
rectangle with the two leftmost cells of the bottom row removed.

So now we forget about the original problem, and try to find a “structure theorem” for B(n).
Of course, if n = 0, 1, then B(n) is the empty set, but if n ≥ 2 then, we consider the leftmost
unoccupied cell of the top row. Now there is only one case to consider: it is tiled by a horizontal
tile, getting a board of the form

11000 . . . 0
11000 . . . 0 ,

which is trivially “isomorphic” to A(n− 2).

We now have two “structure theorems”:

A(n) ≡ A(n− 1) ∪B(n) (n > 0) ,

B(n) ≡ A(n− 2) . (MarkovianScheme)

Now taking cardinalities, calling a(n) := |A(n)|, b(n) := |B(n)|, we have the system of linear
recurrences

a(n) = a(n− 1) + b(n) (n > 0) ,

b(n) = a(n− 2) ,

with the obvious initial conditions a(−2) = 0, a(−1) = 0, a(0) = 1.
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Doing the usual generatingfunctionology, we get the generating functions

f(t) :=
∞∑

n=0

a(n)tn =
1

1− t− t2 ,

g(t) :=
∞∑

n=0

b(n)tn =
t2

1− t− t2 .

Equivalently, we can use Polya’s Picture Writing[P] and use weight-enumerators to deduce
the system

f(t) = 1 + tf(t) + g(t) ,

g(t) = t2f(t) ,

and solve the system of two linear equations in the two unknowns f(t), g(t). But we can
do better still: keep track of the number of occurrences of each tile. Introducing the variables
h and v for a horizontal and vertical tile respectively, and defining the weight of a tiling to be
h#horizontal tilesv#vertical tilestn, where n is its length, and defining F (t, h, v) to be the sum of all
the weights of all tilings, and analogously G(t, h, v) for the set B, we get the system

F (t, h, v) = 1 + tvF (t, h, v) + hG(t, h, v) ,

G(t, h, v) = t2hF (t, h, v) ,

and solving this system gives:

F (t, h, v) :=
1

1− vt− h2t2
,

G(t, h, v) :=
t2h

1− vt− h2t2
.

Note that f(t), g(t), and F (t, h, v), G(t, h, v) are rational functions. In particular, taking the
partial-fraction decomposition of f(t), over the reals, one easily gets the asymptotics for a(n),
namely (

√
5/φ) · φn, where φ is the Golden Ratio. Also by differentiating w.r.t. h and v and

then plugging-in h = 1 and v = 1 one gets the generating function for “the total number of
horizontal tiles” and “the total number of vertical tiles” respectively, from which once again, we can
deduce asymptotics and get the asymptotic averages by dividing by the already-known asymptotic
“number of tilings”. Ditto for the higher moments and correlation (of course in this toy problem
the correlation is tautologically −1).

But there is more! Now that we have quick ways for computing a(n) and b(n), up to very large
n, either via the generating function or directly by (MarkovianScheme), we can use the latter,
with the help of Wilf’s methodology[W] to do sequencing, ranking, and random selection.
Let’s just consider the last, that of generating uniformly at random, such a tiling of the 2 × n
rectangular board. Use a loaded coin, with probabilities a(n − 1)/a(n) and b(n)/a(n) to decide
whether to cover the leftmost-bottommost cell with a vertical or horizontal tile respectively. In
the former case, continue recursively. In the latter case, use a very biased coin with probabilities
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b(n)/a(n− 2) = 1 and 0 to decide whether to tile the leftmost 0 at the top row, with a horizontal
tile or vertical tile respectively, and then continue recursively.

The General Case

The same reasoning applies to an arbitrary (but fixed, i.e. numeric) width k and an arbitrary
(but of course finite) set of (finite) “tiles”. Here a tile is any finite set of lattice points, that does
not need to be connected, and a tiling is a covering by translations of the tiles.

The logic is the same as above, but instead of only one ‘auxiliary’ set B(n) (that was trivially
isomorphic to A(n− 2)) we get many more such ‘stepping-stones’. These auxiliary sets are tilings
of jagged rectangular boards that can be represented as, for example, (here the width, k, is 4) :

0101 . . . 0
1001 . . . 0
0000 . . . 0
1110 . . . 0

,

where . . . stands for 0’s (i.e. still unoccupied cells). We can code such jagged boards on the computer
just as above as matrices of 0’s and 1’s leaving the . . . implicit, and making it right-justified (in
addition to left-justified), and hence there should be at least one 1 in the rightmost column. We
also assume that the leftmost column has at least one 0, or else it is equivalent to a smaller board
with that leftmost column removed (giving the removed column its due weight by multiplying by
t when we do the equations). For each such jagged board we (or rather the computer) locates the
fundamental free cell which is the lowest 0 in the leftmost column. We then consider which of
the tiles in the set of tiles can cover that cell, and in what relative position of the considered tile.
For each such scenario, the computer places that tile, getting a different jagged board, that may
be a previously-encountered one or a brand-new one. For each new board, we do it again. The
computer checks at each stage whether each and every jagged-board encountered so-far already has
a structure theorem expressing it a a union of isomorphic copies of other jagged boards, and if not,
keeps creating new structure theorems, that in turn usually bring in new kinds of jagged boards.
Eventually there won’t be any new ones (pigeonhole!) and then the process halts.

Next, to get generating functions, the computer (all by itself) takes weight-enumerators, getting a
(usually very large) system of linear equations for the set of unknown weight-enumerators for these
jagged boards, that includes, in its midst, the original, non-jagged rectangular board. Then, Maple
solves this system, giving in particular the generating function for the original set, the rational
function, (in t, or in t as well as in the tile-variables) whose Maclaurin series’s coefficient of tn is
the number of (or weight-enumerating polynomial for) tilings of a k × n rectangular board by the
given set of tiles.

Once the generating function is known, we can process it, using Maple’s built-in partial-fraction
(over the reals) (parfrac) and differentiation, diff, to get asymptotic size, and asymptotic aver-
ages, variance, covariance, and higher moments for the random variables “number of occurrences
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of a given tile-type”.

Disclaimer: This last part involves floating-point calculations and may not be entirely rigorous. In
principle, of course, one can stay within algebraic numbers, but the output would not be insightful
to human eyes.

The Maple Package TILINGS

All this (and more!) is implemented in the Maple package TILINGS, that can be downloaded from

http://www.math.rutgers.edu/~zeilberg/tokhniot/TILINGS .

Once you downloaded it into a directory in your computer, calling it TILINGS (and not TILINGS.txt),
go into Maple, and type:

read TILINGS:

and then follow the instructions given there. In particular, for a list of the main functions, type
ezra(); and for help with a specific function, type ezra(FunctionName);.

Also available is a precursor Maple package RecTILINGS that only handles rectangular tiles. It can
be downloaded from:

http://www.math.rutgers.edu/~zeilberg/tokhniot/RecTILINGS .

A Very Quick Overview

Full details are given on-line, but for the benefit of the lazy reader who does not use Maple, let me
just mention that the main functions are:

GFt(k,Tiles,t) and GFtH(k,Tiles,t,H) .

The former computes the generating function (in t only) and the latter the weight-enumerator (in
t and in the variables H[tile], one for each tile).

Rt(a, b) is the package’s shorthand for a b × a rectangular tile. For example, the toy problem we
did above by hand is reproduced by:

GFt(2,[Rt(1,2),Rt(2,1)],t); and

GFtH(2,[Rt(1,2),Rt(2,1)],t,H); .

Sidra(k,ListOfTiles,N); gives you the first N + 1 terms of the enumerating sequence (that can
automatically be sent to Sloane’s database), while SidraW(k,H,ListOfTiles,N); gives you the
first N + 1 terms in the sequence of weight-enumerators, that are polynomials in H[tile]’s.

Astat(k,ListOfTiles,n); gives you the asymptotic statistics: average number of occurrences for
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each tile, the variance, and the asymptotic covariance matrix for these random variables (in the
order of appearance in the list ListOfTiles). AstatV is a verbose version of Astat.

Finally, RandTiling(ListOfTiles,k0,n0); gives you a (uniformly) random tiling of a k0 × n0
rectangular board, using the given tiles (e.g. try: RandTiling([Rt(1,2),Rt(2,1)],4,10);), and

RandTilingNice(ListOfTiles,k0,n0); gives you the same in nice, matrix form.

BuildTree and BuildTreeH actually gives you the Markovian Enumeration Scheme, complete with
generating functions, and Sipur and SipurArokh tell you everything you always wanted to know
about the tilings.

Sample Input and Output

The webpage of this article,

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/tilings.html ,

contains several sample input and output files. Readers can generate their own output for their
favorite set of tiles and for their favorite width.

An “Almost” Automatic Proof of Kasteleyn’s Formula

In the very special case of two dimer tiles (1 × 2 and 2 × 1), Kasteleyn and Fisher&Temperley
([K][FT], see [AS] for a beautiful recent survey) gave their deservedly celebrated beautiful formula
for the weight-enumerator of an m × n rectangle for arbitrary (i.e. symbolic) m and n. To wit, if
m and n are both even positive integers, and z and z′ the variables for the horizontal and vertical
dimers respectively (what we called h and v above), then

Zm,n(z, z′) = 2mn/2

m/2∏
r=1

n/2∏
s=1

[
z2 cos2

rπ

m+ 1
+ z′2 cos2

sπ

n+ 1

]
, (K)

with a similar formula when n is odd. At this time of writing, computers can’t prove this formula
in general. But for any specific m (but general(!) n), it is now a routine verification, thanks to our
Maple package TILINGS. Of course, in practice, it can only be done for small values of m (m ≤ 10
on our computer), but with bigger and future computers, one would be able to go further. The
proof is a beautiful example of (rigorous!) generalization from finitely many cases, combined with
‘general-nonsense’ linear algebra handwaving, that is nevertheless fully rigorous.

Let’s call the right side of (K) Wm,n(z, z′). We have to prove, for our given m, that Wm,n(z, z′) =
Zm,n(z, z′) for all n. For a fixed even m it is readily seen that Wm,n(z, z′) is expressible as a
product of m/2 different dilations of Un(z), the Tchebycheff polynomials of the second kind. It is
well-known (and easily seen) that Un(z) satisfies a (homogeneous) linear recurrence equation with
constant (i.e. not depending on n) coefficients of order 2, and hence so does any of its dilations
Un(βz), and the product ofm/2 of these creatures consequently satisfies a linear recurrence equation
with constant coefficients of order 2m/2. Hence its generating function, in t, is a rational function
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whose denominator has degree 2m/2 and numerator degree ≤ 2m/2− 1. We have to prove that this
generating function coincides with the ‘real thing’, the rational function outputted by procedure
GFtH of TILINGS, that also turns out to have the same degrees. But to prove that two rational
functions whose numerator-degree is p and denominator-degree is q are identical, we only have
to check, by elementary linear algebra, that the first p + q + 1 terms in their Maclaurin series
coincide (in our case 2m/2+1), and this is a routine check, done in our package TILINGS by typing
ProveKasteleyn(m);, for the general case (with z and z′), and ProveKasteleyn1(m);, for the
straight-enumeration case ( z = z′ = 1).

By hindsight, Kasteleyn and Fisher&Temperley were extremely lucky, since in the very special
case of the two dimer tiles, they were able to use graph theory and Pfaffians. The general case
seems, at present, out of reach. Even the monomer-dimer problem is still wide open, let alone an
“explicit” expression for the weight-enumerators for tilings of an m×n rectangle using other sets of
tiles. Our Maple package TILINGS is a research tool that can automatically discover and rigorously
prove results for specific m but general n. Let’s hope that the human can use it to discover new
ansatzes by which to conjecture and hopefully prove some “explicit” form for the monomer-dimer
and more general sets of tiles, where both m and n are symbolic. From this, one should be able
to extract, at least, an “explicit” expression for the so-called thermodynamic limit, or at the very
least, determine rigorously the critical exponent.

I hope to explore these speculations in a subsequent article.
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An open letter concerning

Alexander duality for monomial ideals and
their resolutions

Dear Reader,

This article was submitted to Journal of Pure and Applied Algebra on December 15, 1998,
and it was rejected with a very short report about eight months later, the cited reason being
that it was too long for its content. By the time I received that overdue rejection, I was
nearly done writing a sequel,

Ezra Miller, The Alexander duality functors and local duality with monomial support,
Journal of Algebra 231 (2000), 180–234.

which contained more general results. The sequel has been well-cited, but the current article
was already on the arXiv (math.AC/9812095), and according to Google Scholar it has also
been well-cited. In fact, this article has been cited more than most of my others—as much
or more, for example, than my articles in Journal of the American Mathematical Society
and Duke Mathematical Journal. It seemed a shame that what is apparently a useful article
should languish in eternal semipublication, so I submitted it to Rejecta Mathematica.

Why is this article useful? It is more concrete than its sequel: more examples, more illus-
trations, and fewer functors. The article contains no known errors and no known uncited
rederivations of earlier work; in fact, subsequent work (by other authors as well as in its
sequel) has confirmed the results herein by independent methods many times over. The
article is unchanged from the version submitted to Journal of Pure and Applied Algebra.

Ezra Miller

25 February 2008
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Alexander Duality for Monomial Ideals and Their Resolutions

Ezra Miller

Abstract

Alexander duality has, in the past, made its way into commutative algebra through Stanley-
Reisner rings of simplicial complexes. This has the disadvantage that one is limited to square-
free monomial ideals. The notion of Alexander duality is generalized here to arbitrary mono-
mial ideals. It is shown how this duality is naturally expressed by Bass numbers, in their
relations to the Betti numbers of a monomial ideal and its Alexander dual. The effect of
Alexander duality on free resolutions is studied in the context of cellular resolutions. Relative
cohomological constructions on cellular complexes are shown to relate cellular free resolutions
of a monomial ideal to free resolutions of its Alexander dual ideal.

Introduction

Alexander duality in its most basic form is a relation between the homology of a simplicial

complex Γ and the cohomology of another simplicial complex Γ∨, called the dual of Γ. Recently

there has been much interest in the consequences of this relation when applied to the monomial

ideals which are the Stanley-Reisner ideals IΓ and IΓ∨ for the given simplicial complex and its

Alexander dual. This has the limitation that Stanley-Reisner ideals are always squarefree. The first

aim of this paper is to define Alexander duality for arbitrary monomial ideals and then generalize

some of the relations between IΓ and IΓ∨ . A second goal is to demonstrate that Bass numbers are

the proper vessels for the translation of Alexander duality into commutative algebra. The final goal

is to reveal the connections between Alexander duality and the recent work on cellular resolutions.

There are two “minimal” ways of describing an arbitrary monomial ideal: via the minimal

generators or via the (unique) irredundant irreducible decomposition. Given a monomial ideal

I, Definition 1.5 describes a method for producing another monomial ideal I∨ whose minimal

generators correspond to the irredundant irreducible components of I. Miraculously, this is enough

to guarantee that the minimal generators of I correspond to the irreducible components of I∨. It is

particularly easy to verify that this reversal of roles takes place for the squarefree ideals I = IΓ and

I∨ = IΓ∨ above (Proposition 1.10). A connection with linkage and canonical modules is described

in Theorem 2.1.

One can also deal with Alexander duality as a combinatorial phenomenon, thinking of Γ as an

order ideal in the lattice of subsets of {1, . . . , n}. The Alexander dual Γ∨ is then given by the

complement of the order ideal, which gives an order ideal in the opposite lattice. For squarefree

monomial ideals all is well since the only monomials we care about are represented precisely by the

lattice of subsets of {1, . . . , n}. For general monomial ideals we instead consider the larger lattice

Zn, by which we mean the poset with its natural partial order �. Then a monomial ideal I can be

regarded as a dual order ideal in Zn, and I∨ is constructed (roughly) from the complementary set

of lattice points, which is an order ideal—see Definition 2.9. It is Theorem 2.13 which proves the

equivalence of the two definitions.
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Bass numbers first assert themselves in Section 3. Their relations to Betti numbers for monomial

modules (Corollary 3.6 and Theorem 3.12) are derived as consequences of graded local duality and

Alexander duality (in its avatar as lattice duality in Zn). The Bass-Betti relations are then massaged

to equate the localized Bass numbers of I (Definition 4.8) with the Betti numbers of I∨ in the first

of the two central results of this paper, Theorem 4.10. Theorem 2.13 is then recovered as a special

case of this main result, which also finds an application to inequalities between the Betti numbers

of dual ideals (Theorem 4.13) generalizing those for squarefree ideals in [2].

The extension of Alexander duality to resolutions is accomplished in Sections 5 and 6. A new

canonical and geometric resolution, the cohull resolution is constructed in Definition 5.15. It should

be thought of as Alexander dual to the hull resolution of [4] (which is similarly canonical and

geometric). Roughly speaking, the cohull resolution is constructed from the irreducible components

instead of the minimal generators. The cohull resolution owes its existence to the second central

result of the paper, Theorem 5.8, which is a more general result on duality for cellular resolutions.

Its proof, which is resolutely algebraic, is the content of Section 6. The idea is to deform an ideal

into its dual step by step via Definition 6.1 and keep track of the deformations on cellular resolutions

(Theorem 6.9). The final step, taken in Theorem 6.11, is to check the effect of the deformations on

the homology of the resolutions.

Acknowledgements. The author would like to express his thanks to Dave Bayer, David Eisenbud,

Serkan Hosten, Sorin Popescu, Stefan Schmidt, Frank Sottile, Bernd Sturmfels, and Kohji Yanagawa

for their helpful comments and discussions.

1 Definitions and basic properties

For notation, let S be the Zn-graded k-algebra k[x1, . . . , xn] ⊆ T := S[x−1
1 , . . . , x−1

n ], where k is a

field and n ≥ 2. If A ⊆ T is any subset, 〈a | a ∈ A〉 will denote the S-submodule generated by

the elements in A, and it may also be regarded as an ideal if A ⊆ S. The maximal Zn-graded ideal

〈x1, . . . , xn〉 of S will be denoted by m. Each (Laurent) monomial in T is specified uniquely by a

single vector a = (a1, . . . , an) =
∑

i aiei ∈ Zn, while each irreducible monomial ideal is specified

uniquely by a vector b = (b1, . . . , bn) ∈ Nn, so the notation

xa = xa1
1 · · ·xan

n and mb = 〈xbii | bi ≥ 1〉
will be used to highlight the similarity. The Zn-graded prime ideals, which are precisely the mono-

mial prime ideals, are indexed by faces of the (n − 1)-simplex ∆ := 2{1,...,n} with vertices 1, . . . , n.

Identifying a face F ∈ ∆ with its characteristic vector in Zn, the monomial prime corresponding

to F may be written with the above notation as mF . Note, in particular, that mb need not be an

artinian ideal, just as xa need not have full support. In fact, mb is m
√

b-primary, where
√

b ∈ ∆ is

the face representing the support of b; that is,
√

b has i th coordinate 1 if bi ≥ 1 and 0 otherwise.

With this notation, taking radicals can be expressed as
√

mb = m
√

b.
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All modules N and homomorphisms of such will be Zn-graded, so that N =
⊕

a∈Zn Na. In

addition, any module that is isomorphic to a submodule of T as a Zn-graded module will, if it is

convenient, be freely identified with that submodule of T . For instance, the principal ideal generated

by x1 · · ·xn can be identified with the module S[−1], where 1 = (1, . . . , 1) ∈ Zn and N [a]b = Na+b

for a,b ∈ Zn. In this paper, ideals will all be proper monomial ideals, and the symbol I will always

denote such an ideal. The vector aI will denote the exponent on the least common multiple of the

minimal generators of I.

Before making the definition of Alexander dual ideal, the next few results make sure that the

exponents used to define the set Irr(I) of irredundant irreducible components of I are � aI . For

the next two results, let Λ denote the set of irreducible ideals containing I.

Lemma 1.1 If mb ∈ Irr(I) then mb is minimal (under inclusion) in Λ.

Proof: Suppose mb 6= mc and that mb ⊇ mc ∈ Λ. If now I = mb ∩ I ′ for some ideal I ′ then also

I = mc ∩ I ′, whence mb 6∈ Irr(I). 2

Proposition 1.2 If mb ∈ Irr(I) then for each i ∈ √b there is a minimal generator xc of I with

bi = ci.

Proof: Suppose mb ∈ Irr(I) but the conclusion does not hold. Then given any minimal generator

xc of I, either bi′ ≤ ci′ for some i 6= i′ ∈ √b, or else bi < ci. In either case, xc ∈ mb+ei , where ei is

the i th unit vector in Zn. Then mb+ei ⊇ I, contradicting the minimality of mb in Λ. 2

Corollary 1.3 For any mb ∈ Irr(I) we have b � aI . 2

The following notation will be very convenient in the definition and handling of Alexander

duality. For any vector a ∈ Zn and any face F ∈ ∆, let a · F denote the restriction of a to F :

(a · F )i =

{
ai if i ∈ F
0 otherwise

.

This operation may also be thought of as the coordinatewise product of a and F . If, in addition,

0 � b � a, define ba to be the vector whose i th coordinate is ai + 1− bi if bi ≥ 1 and 0 otherwise;

more compactly,

ba = (a + 1− b) ·
√

b = (a + 1) ·
√

b− b ,

where
√

b is the support of b, as above. The next result is a first indication of the utility of ba

when applied to irreducible ideals mb.

Proposition 1.4 If 0 � b, c � a then mb ⊇ mc if and only if ba � ca.
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Proof: The condition mb ⊇ mc is equivalent to the combination of (i)
√

b � √c and (ii) b ·√c � c.

Now consider the inequalities in the following chain:

ba = (a + 1− b) ·
√

b � (a + 1− b) · √c � (a + 1− c) · √c = ca .

The left inequality is equivalent to (i) since a + 1− b has full support, and the right inequality is

equivalent to (ii) since c · √c = c. It remains only to show that ba � ca implies both inequalities,

and this can be checked coordinatewise. If ci = 0, then both inequalities become trivial; if ci > 0

then bi > 0, and the left inequality becomes an equality while the right inequality becomes (ba)i =

ai + 1− bi ≥ ai + 1− ci = (ca)i . 2

Corollary 1.3 clears the way for the main definition of this paper:

Definition 1.5 (Alexander duality) Given an ideal I and a � aI , the Alexander dual ideal Ia

with respect to a is defined by

Ia = 〈xba | mb ∈ Irr(I)〉.
For the special case when a = aI , let I∨ = IaI .

Remark 1.6 (i) We will never have occasion to take an Alexander dual of the ideal m, so ma will

retain its original definition.

(ii) The dual Ia with respect to any a � aI depends only on a · √aI . This is because b and a · √b

determine ba, and a · √b = (a · √aI) ·
√

b for all of the relevant b by Corollary 1.3. In particular,

I∨ = I1 if I is squarefree.

(iii) I∨ is not gotten by taking the depolarization of the Alexander dual of the polarization of

I (see [14], Chapter II for polarization). For instance, when I = 〈x2, xy, y2〉, the polarization is

Ipolar = 〈x1x2, x1y1, y1y2〉, whose canonical Alexander dual is I∨polar = 〈x1y1, x1y2, x2y1〉. Removing

the subscripts on x and y then yields the principal ideal 〈xy〉, whereas I∨ = 〈xy2, x2y〉.

Proposition 1.7 The set of generators for Ia given by the definition is minimal. More generally,

suppose a � aI and Λ is a collection of integer vectors � a such that I =
⋂

b∈Λ mb. Then

Ia = 〈xba | b ∈ Λ〉, and the intersection determined by Λ is irredundant if and only if the set of

generators for Ia is minimal.

Proof: This follows from Corollary 1.3 and Proposition 1.4. 2

Example 1.8 Let n = 3, so that S = k[x, y, z]. Figure 1 lists the minimal generators and irredun-

dant irreducible components of an ideal I ⊆ S and its dual I∨ with respect to aI . The (truncated)

“staircase diagrams” representing the monomials not in these ideals are also rendered in Figure 1.

In fact, the staircase diagram for I∨ is gotten by literally turning the staircase diagram for I upside-

down (the reader is encouraged to try this). Notice that the support of a minimal generator of I is

equal to the support of the corresponding irreducible component of I∨. 2
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012

031

301

202
111

005

024

043

350

430

125
215

144

103

451 001

023

042

205

115
035

054

351
441

422

403

455
304

210
130

I I∨

I = 〈z5, x2z2, x4y3, x3y5, y4z3, y2z4, xyz〉
= 〈x2, y, z5〉 ∩ 〈y, z2〉 ∩ 〈y3, z〉 ∩ 〈x4, y5, z〉 ∩ 〈x3, z〉 ∩ 〈x, z3〉 ∩ 〈x, y4, z4〉 ∩ 〈x, y2, z5〉

a := aI = (4, 5, 5)

I∨ = 〈z〉 ∩ 〈x3, z4〉 ∩ 〈x, y3〉 ∩ 〈x2, y〉 ∩ 〈y2, z3〉 ∩ 〈y4, z2〉 ∩ 〈x4, y5, z5〉
= 〈x3y5z, y5z4, y3z5, xyz5, x2z5, x4z3, x4y2z2, x4y4z〉.

Figure 1: The truncated staircase diagrams, minimal generators, and irredundant irreducible com-
ponents for I and I∨. Black lattice points are generators, and white lattice points indicate irreducible
components. The numbers are to be interpreted as vectors, e.g. 205 = (2,0,5). The arrows attached
to a white lattice point indicate the directions in which the component continues to infinity; it
should be noted that a white point has a zero in some coordinate precisely when it has an arrow
pointing in the corresponding direction.

Example 1.9 Let Σn denote the symmetric group on {1, . . . , n} and c = (1, 2, . . . , n) ∈ Nn. The

ideal I = 〈xσ(c) | σ ∈ Σn〉 is the permutahedron ideal determined by c, introduced in [4], Example 1.9.

The results of Example 5.22 below imply that the canonical Alexander dual is the forest ideal, which

is generated by 2n − 1 monomials: I∨ = 〈(xF )n−|F |+1 | ∅ 6= F ∈ ∆〉. For instance, when n = 3,

I = 〈xy2z3, xy3z2, x2yz3, x2y3z, x3yz2, x3y2z〉
I∨ = 〈xyz, x2y2, x2z2, y2z2, x3, y3, z3〉.

The quotient of S by the forest ideal has the same dimension (over k) as the algebra An generated

by the Chern 2-forms of the tautological line bundles over a flag manifold (see [10] and [13]). More

precisely, the standard monomials of I∨, which are known to be in bijection with the forests on

n labelled vertices, are shown in [10] to be a k-basis of An. The minimal free resolution of I∨ is

obtained in Example 5.22, below. 2
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Recall that for a simplicial complex Γ ⊆ ∆ the Stanley-Reisner ideal IΓ of Γ is defined by the

nonfaces of Γ:

IΓ = 〈xF | F 6∈ Γ〉,
and the Alexander dual simplicial complex Γ∨ consists of the complements of the nonfaces of Γ:

Γ∨ = {F ∈ ∆ | F 6∈ Γ},
where F = {1, . . . , n} \ F . Recall also that IΓ may be equivalently described as

IΓ =
⋂
F∈Γ

mF ,

since mF ⊇ I ⇔ F has at least one vertex in each nonface of Γ ⇔ F is missing at least one vertex

from each nonface of Γ ⇔ F is a face of Γ. Applying Definition 1.5 to the latter characterization

of IΓ yields:

Proposition 1.10 For a simplicial complex Γ ⊆ ∆ we have I∨Γ = IΓ∨.

Proof: Observe that b1 = b if b ∈ {0, 1}n, and use Proposition 1.7 along with Remark 1.6(ii). We

get I∨Γ = 〈xF | F ∈ Γ〉 = 〈xF | F 6∈ Γ∨〉 = IΓ∨ . 2

Thus, as promised, Definition 1.5 generalizes to arbitrary monomial ideals the definition of

Alexander duality for squarefree monomial ideals. The connection with the squarefree case is never

lost, however, because the general definition does the same thing to the zero-set of I as the squarefree

definition does:

Proposition 1.11 Taking Alexander duals commutes with taking radicals:
√
I∨ =

√
I
∨

.

Proof: Since 0 � b � aI whenever mb ∈ Irr(I), the equality
√

b =
√

baI follows from the

definitions. Thus,

√
I∨ = 〈x

√
b | mb ∈ Irr(I)〉

= 〈xF | mF is minimal among primes containing I〉
=
√
I
∨
,

the last equality using again the facts mentioned in the first line of the proof of Proposition 1.10.

2

The notion of Alexander duality sheds light on the interconnections between some of the de-

velopments in [3], [4], and [15] concerning cellular resolutions and (co)generic monomial ideals. To

begin with, consider the following condition on a set of vectors {bj = (bj1, . . . , b
j
n) ∈ Nn}rj=1:

bji ≥ 1 ⇒ bji 6= bj
′
i for all j′ 6= j.
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A generic ideal, as defined in [3], is an ideal whose minimal generators have exponent vectors

satisfying the above condition; similarly, a cogeneric ideal, as defined in [15], is an ideal whose

irredundant irreducible components have exponent vectors satisfying the above condition. Using

Definition 1.5 the following is immediate (for any a � aI).

Proposition 1.12 Ia is generic if and only if I is cogeneric. 2

Example 1.13 The ideal I in Example 1.8 is generic, while I∨ is cogeneric. 2

The connections between the minimal resolutions of such ideals and cellular resolutions will be

explored in Section 5.

Recall that the Castelnuovo-Mumford regularity and initial degree of a Z-graded S-module L

defined respectively by

reg(L) := max{j ∈ Z | Tori(L, k)i+j 6= 0} and indeg(L) := min{j ∈ Z | Lj 6= 0},

where Lj is the jth component of L. The question was raised in [8], Question 10 whether there is a

duality for possibly nonradical monomial ideals with the “amazing properties”

• reg(I)− indeg(I) = dim(S/I∨)− depth(S/I∨)
• I is componentwise linear if and only if S/I∨ is sequentially Cohen-Macaulay

obeyed by Alexander duals in the squarefree case. Here, I is considered in its Z-grading. Having

defined a duality operation in this paper, some comments are obviously warranted.

First of all, it is unrealistic to expect the first property to extend to the arbitrary (nonradical)

case since the right-hand side of the equation is bounded while the left-hand side is not, in general.

For instance, if d ∈ N then reg(md·1) − indeg(md·1) = n(d − 1) − d while (md·1)∨ = 〈x1 · · ·xn〉 is

Cohen-Macaulay. Nevertheless, there may be some class of ideals which behaves nicely under some

kind of duality, not necessarily as defined here. As to whether or not such a class of ideals exists

for the Alexander duality as defined here, such an investigation has not yet been made.

Unfortunately, the second property also fails for I and Ia, for somewhat trivial reasons: almost

every ideal has an artinian Alexander dual. Specifically, if I is arbitrary and x = x1 · · ·xn, then

S/(xI)a is artinian (for any a � aI), and hence Cohen-Macaulay. But the minimal free resolution

of xI is just the shift by 1 of the minimal resolution of I. Thus every minimal resolution, be it

componentwise linear or not, appears as the resolution of an ideal whose dual is a Cohen-Macaulay

ideal; i.e. S/Ia Cohen-Macaualy 6⇒ I componentwise linear.

One might still hope that the implication “I has a linear resolution ⇒ S/Ia is sequentially

Cohen-Macaulay” would hold, but even this fails, as the example below shows. The fundamental

problem with the nonsquarefree case is that the Z-degree of an element is not determined by the

support of its Zn-graded degree, as it is with squarefree monomials. Thus an ideal might have
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a linear resolution while its generators have support sets of varying sizes, wreaking havoc with

the equidimensionality required for the Cohen-Macaulayness of the dual. Even so, it would be

very interesting to know what is the property Alexander dual to “sequentially Cohen-Macaulay”;

perhaps this property could relax the requirements of componentwise linearity in a nice way.

Example 1.14 Let I ′ = 〈ab, bc, cd〉 ⊆ S = k[a, b, c, d] be the ideal of the “stick twisted cubic”

simplicial complex spanned by the edges {b, d}, {b, c}, and {a, c}. It is readily checked that I ′ has a

linear resolution: indeed, (I ′)∨ is the ideal of another stick twisted cubic, which is Cohen-Macaulay

because the stick twisted cubic is connected and has dimension 1, so [6], Theorem 3 applies. Let

I = mI ′ = 〈a2b, abc, acd, ab2, b2c, bcd, abc, bc2, c2d, abd, bcd, cd2〉
I∨ = 〈b2d2, b2c2, a2c2, abc2d2, a2bcd2, a2b2cd〉

with aI = (2, 2, 2, 2). Then I has a linear resolution by [8], Lemma 1, and we show that S/I∨ is not

sequentially Cohen-Macaulay.

Recall that for a module N to be sequentially Cohen-Macaulay, we require that there ex-

ist a filtration 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nr = N such that Ni/Ni−1 is Cohen-Macaulay for all

i ≤ r and dim(Ni+1/Ni) > dim(Ni/Ni−1) for all i < r. It follows from the equidimensionality

of N/Nr−1 and the strict reduction of dimension in successive quotients that Nr−1 is the top di-

mensional piece of N ; i.e. Nr−1 is the intersection of all primary components (of 0 in N) which

have dimension dim(N). Thus it suffices to check that S/I∨top is not Cohen-Macaulay, where

I∨top = 〈b2d2, b2cd, abcd, b2c2, abc2, a2c2〉 is the intersection of all primary components of I∨ which

have dimension 2 = dim(S/I∨). 2

2 Alternate characterizations of the Alexander dual ideal

Definition 1.5 is quite satisfactory for the consequences just derived from it, but it can sometimes

be inconvenient to work with. For instance, it is not obvious from the definition that (Ia)a = I,

which is fundamental—see Corollary 2.14. For this and other applications, we set out now to

find other characterizations of the Alexander dual ideal in Theorem 2.1 and in Definition 2.9 with

Theorem 2.13. Along the way, an algebraic analogue of combinatorial lattice duality in Zn is defined

in Defintion 2.3.

First, a result relating Alexander duality to linkage (see [17], Appendix A.9 for a brief introduc-

tion to linkage, and references):

Theorem 2.1 If a � aI then (ma+1 : Ia) = I + ma+1.

Proof: Let Min(Ia) denote the exponents on the minimal generators of Ia. Then (ma+1 : Ia) =⋂
b∈Min (Ia)(m

a+1 : xb). But xc · xb ∈ ma+1 ⇔ b + c 6� a ⇔ c 6� a− b ⇔ xc ∈ ma+1−b. Thus,
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taking all intersections over b ∈ Min(Ia),⋂
(ma+1 : xb) =

⋂
ma+1−b =

⋂(
mba

+ ma+1
)

=
(⋂

mba
)

+ ma+1 = I + ma+1

since (ba)a = b for all b � a. 2

Remark 2.2 Using Corollary 2.14, below, this theorem provides a useful way to compute the

Alexander dual ideal, given a set of generators. Indeed, the generators for Ia are simply those

generators of (ma+1 : I) whose exponents are � a. Using Definition 1.5 (and Corollary 2.14 again),

this can also be construed as a method for computing irreducible components of I given a generating

set for I, or vice versa.

Denoting the Zn-graded Hom functor by Hom, the next duality that comes into play is the k-dual

N∧ := Homk(N, k), which is a Zn-graded S-module with the grading (N∧)c = Hom k(N−c, k). It is

a simple but very important observation that T∧ ∼= T as Zn-graded modules. This can be exploited:

let M ⊆ T be a submodule (the Zn-graded submodules of T are precisely the monomial modules of

[4]). Taking the k-dual of the surjection T → T/M yields an injection (T/M)∧ → T∧ ∼= T . This

makes (T/M)∧ into a submodule of T which we call the T -dual of M and denote by MT . If one

thinks of the module M as a set of lattice points in Zn, then MT can be thought of as the negatives

of the lattice points in the complement of M ; i.e. we can make the equivalent

Definition 2.3 The T -dual MT of a monomial module M ⊆ T is defined by x−b ∈MT ⇔ xb 6∈M .

The equivalence with the earlier formulation can be seen simply by examining which Zn-graded

pieces of M and MT have dimension 1 over k and which have dimension 0. Observe the striking

similarity of Definition 2.3 with definition of the dual simplicial complex: F ∈ Γ∨ ⇔ F 6∈ Γ. Here

are some properties of the T -dual which will be used later (possibly without explicit reference).

Note the similarity of (i)–(iii) to the laws governing complements, unions, and intersections.

Proposition 2.4 Let M and N be submodules of T . Then

(i) (MT )T = M (v) T/MT = M∧

(ii) M ⊆ N ⇔ NT ⊆MT (vi) (N/M)∧ = MT/NT if M ⊆ N
(iii) (M +N)T = MT ∩NT (vii) (N/N∩M)∧ = MT/MT∩NT

(iv) M [a]T = MT [−a]

Proof: Statements (i)–(iv) follow from Definition 2.3, and (v) follows either from the definition

and (i) or as a special case of (vi). To prove (vi) observe that N/M = ker(T/M → T/N) so that

(N/M)∧ = coker((T/N)∧ → (T/M)∧) and use the definition of T -dual. Finally, (vii) is just (vi)

and (iii) applied to (N +M)/M = N/N∩M . 2
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Definition 2.5 Given a monomial ideal I ⊆ S define the Čech hull of I in T :

Ĩ := 〈xb | b ∈ Zn and xb+∈ I〉 ,

where b+ ∈ Nn is, as usual, the join (componentwise maximum) of b and 0 in the order lattice Zn.

Proposition 2.6 Taking the Čech hull commutes with finite intersections and sums. Furthermore,

(i) Ĩ is the largest monomial submodule of T whose intersection with S is equal to I.

(ii) Ĩ can be generated by (possibly infinitely many) monomials in T of degree � aI .

(iii) Ĩ T is generated in degrees � 0.

Proof: The first statement follows from (i) and the definitions.

(i) It is clear from the definition that Ĩ contains I; and if xb ∈ Ĩ ∩ S then b+ = b whence xb ∈ I.

Thus Ĩ ∩ S = I. On the other hand, if M is a monomial submodule of T satisfying M ∩ S = I and

xb ∈M , then xb−· xb = xb+ ∈M ∩ S = I, where b− := b+ − b. Thus M ⊆ Ĩ.

(ii) If xb ∈ Ĩ then c � b+ for some minimal generator xc of I, whence xc−b− is in Ĩ, divides xb,

and has exponent � aI .

(iii) The following statement is precisely the T -dual to statement (i): Ĩ T is the smallest submodule

whose sum with m̃ is equal to I T. As m̃ already contains all degrees 6� 0, minimality of Ĩ T implies

that it is generated in degrees � 0. 2

Example 2.7 (i) Recall that for F ∈ ∆, the complement {1, . . . , n} \ F is denoted by F . Using

this, the localization S[x−F ] is achieved by inverting the variables xi for i 6∈ F . Now let b � 0 and

F =
√

b. Then (
m̃b
)T

=
(
S[x−F ]

)
[b− F ] .

To see this, first observe that if c ∈ Nn then xc 6∈ mb ⇔ c · F � b− F . Therefore, if c ∈ Zn then

xc 6∈ m̃b ⇔ c+ � b− F ⇔ c · F � b− F . This last condition is equivalent to −c · F � F − b,

and this occurs if and only if x−c ∈
(
S[x−F ]

)
[b− F ].

(ii) For a special case, it follows that when b � 0, m̃b+1 = S[b]T . 2

Remark 2.8 Example 2.7(ii) is the reason for the name Čech hull: when b = 0, we find that m̃ is

the kernel of the last map in the Čech complex on x1, . . . , xn.

Definition 2.9 For any monomial ideal I and a � aI , define

I [a] := Ĩ T [−a] ∩ S.
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Ia-

I T

aI

I

aI

I

Ia- Ia+ = 0

I T
Ia-[ ]aII [ ]

0

Figure 2

Example 2.10 Figure 2 is a schematic diagram depicting the transformation in stages from I to

I [aI ]. The black and white dots shift by 1 from the penultimate stage to the last; they are left in place

(with respect to the dark black dot and the dark dotted lines) for the rest of the transformation.

This shift is the reason for the 1 in the definition of ba, and it occurs because the flip-flop from Ĩ

to Ĩ T leaves a space of 1. The crux of this whole theory is that the “boundaries” of Ĩ and Ĩ T have

the same shape, but reversed, thus switching the roles of the black and white dots. This schematic

may be helpful in parsing the proof of Theorem 2.13, below. 2

Lemma 2.11 (I [a])̃ = Ĩ T [−a].

Proof: Let M = Ĩ T [−a]. By Proposition 2.6(i), (M ∩ S )̃ ⊇ M since their intersections with S

are equal by definition. Thus ((M ∩ S )̃ )T ⊆ MT , with equality in degrees � 0. But MT = Ĩ[a]

is generated in negative degrees by Proposition 2.6(ii), so that in fact ((M ∩ S )̃ )T = MT . Taking

T -duals of this equality gives the desired result. 2

The upshot is that I may be reconstructed from I [a] via the same construction which produces I [a]

from I:
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Proposition 2.12 aI[a] � a and I = (I [a])[a].

Proof: By Proposition 2.6(iii) Ĩ T [−a] is generated in degrees � a, so Lemma 2.11 implies that

the same holds for (I [a])̃ . It is trivial to check that if any monomial module M ⊆ T is generated

in degrees � a then so is M ∩ S, because a � 0. Thus aI[a] � a, and, in particular, (I [a])[a] is

well-defined. Now

(I [a])[a] = ((I [a])̃ )T [−a] ∩ S by definition

= (Ĩ T [−a])T [−a] ∩ S by the previous lemma

= Ĩ ∩ S by Proposition 2.4(iv) and (i)
= I. 2

The real cause for introducing I [a] is the next result, which may not be so unexpected at

this point. It would seem that Theorem 2.13 makes the notation I [a] superfluous, and it does;

nevertheless, the notation will be retained for emphasis, to indicate that Sections 3 and 4 (and, in

particular, Theorem 4.10) are logically independent from Theorem 2.13.

Theorem 2.13 Ia = I [a].

Proof: To simplify notation, declare that b ∈ Irr(I) if mb ∈ Irr(I). For each b ∈ Irr(I), let

Sb = S[x–
√

b ] be the localization of S at the prime m
√

b. Then for each b ∈ Irr(I) and any c ∈ Nn

we have the following two facts:

(i) Sb[−c] ∼= Sb[−c · √b ] since multiplication by xc·√b is a Zn-graded automorphism of Sb[−c].

(ii) S ∩Sb[−c ·√b ] = S[−c ·√b ]. Indeed, this is equivalent to
(
〈xc·√b 〉 ·Sb

)
∩S = 〈xc·√b 〉, which

holds because 〈xc·√b 〉 ⊆ S is saturated with respect to 〈x
√

b 〉; i.e.
(
〈xc·√b 〉 : x

√
b
)

= 〈xc·√b 〉.
Creating I [a] from I in stages yields

Ĩ =
⋂

m̃b by Proposition 2.6

⇒ Ĩ T =
∑(

m̃b
)T

by Proposition 2.4(iii)

=
∑

Sb[b−
√

b] by Example 2.7(i)

⇒ Ĩ T [−a] =
∑

Sb[−ba] by (i) above, with c = a +
√

b− b

⇒ S ∩ Ĩ T [−a] =
∑

S[−ba] by (ii) above, with c = ba

where the intersection and all of the summations are taken over all b ∈ Irr(I). The last summation

above is equal to Ia since each summand S[−ba] is just a principal ideal 〈xba〉. 2

Corollary 2.14 (Ia)a = I. Furthermore, (ba)a = b, so that

Ia =
⋂
{mba | xb is a minimal generator of I} . 2
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Remark 2.15 In general, one has (I∨)∨ 6= I. However, in the special case when I =
√
I, it will

always happen that (I∨)∨ = I. This follows from an application of Corollary 2.14 to Remark 1.6(ii).

The difference aI − aI∨ measures the extent to which (I∨)∨ 6= I fails, in the sense that (I∨)∨ =

I[aI − aI∨ ] ∩ S. However ((I∨)∨)∨ = I∨, so that an ideal which is already an Alexander dual is

maximal in some sense. It is unclear what the invariant aI − aI∨ means, in general, although the

passage from I to (I∨)∨ can sometimes be thought of as a “tightening” that may resolve some

amount of nonminimality in the hull resolution of [4]—see Example 5.27. See also Remark 5.9(ii)

below for another occurrence of the invariant aI − aI∨ .

The reader interested in cellular resolutions may wish to skip directly to Section 5, whose only

logical dependence on Sections 3 and 4 is Proposition 3.11.

3 Bass numbers versus Betti numbers

Algebraically, Alexander duality is best expressed in terms of relations between Betti and Bass

numbers (Definition 3.1), as evidenced by this section and the next. The principle behind this

is that the T -duality of Section 2, which can be thought of as lattice duality in Zn, can also

be interpreted (Corollary 3.6) as a manifestation of the same process that interchanges flat and

injective modules (in the appropriate category). In Theorem 3.12 this results in equalities between

Bass and Betti numbers of I. Though perhaps not so interesting a statement in its own right,

Proposition 3.11 is the workhorse for the remainder of the paper—it is the reason everything else

is true. It encapsulates simultaneously the relations between all of the dualities that enter into this

paper: k- and T -duality, Alexander duality, linkage, local duality, and Matlis duality.

Definition 3.1 The derived functors of the Zn-graded functor Hom will be called Ext , and the left

derived functor of ⊗, which is also Zn-graded, will be called Tor . For a module N define

µi,b(N) = dimk

(
Ext iS(k,N)b

)
βi,b(N) = dimk

(
Tor Si (k,N)b

)
,

the i th Bass and Betti numbers of N in degree b.

Remark 3.2 (i) In order to compute these derived functors in the category M of Zn-graded S-

modules (see Proposition 3.3), we need to know thatM has enough injective and projective modules,

just as in the nongraded case. Of course, there are always free modules, so this takes care of the

projectives; for injectives one can easily modify the proof of [5], Theorem 3.6.2 to fit the Zn-graded

case.

(ii) If M is finitely generated then Ext ·(M,−) = Ext ·(M,−). In particular, summing the Betti or

Bass numbers over all b (or all b with fixed Z-degree) gives the same result as computing directly

in the nongraded (or Z-graded) case.

E. Miller Alexander Duality for Monomial Ideals and their Resolutions

Rejecta Mathematica Vol. 1, No. 1, July 2009

This work is published under the Creative Commons Attribution-NonCommercial License. http://creativecommons.org/licenses/by-nc/2.5/legalcode

31

http://math.rejecta.org
http://creativecommons.org/licenses/by-nc/2.5/legalcode


In what follows, we will need the notion of a flat resolution in M. This is defined exactly

like a free resolution, except that the resolving modules are required to be flat instead of free,

where flat means acyclic for Tor [18], Section 2.4. Recall that free and flat are equivalent for

finitely generated S-modules; this is a simple consequence of the grading and Nakayama’s lemma.

However, non-finitely generated flat modules, such as localizations of S, may fail to be free, or even

projective.

Proposition 3.3 (i) Ext ·(M,N) can be calculated as the homology of the complexes obtained either

by applying Hom(−, N) to a projective resolution of M in M or by applying Hom(M,−) to an

injective resolution of N in M.

(ii) Tor ·(M,N) can be calculated as the homology of the complexes obtained by either tensoring

with N a flat resolution of M in M or by tensoring with M a flat resolution of N in M.

Proof: (i) Remark 3.2(i) above provides enough injectives to use [18], Definition 2.5.1, Exam-

ple 2.5.3, and Exercise 2.7.4.

(ii) [18], Theorem 2.7.2 and Exercise 2.4.3. 2

Lemma 3.4 N∧ = HomS(N,S∧).

Proof: [5], Proposition 3.6.16(c), whose proof holds just as easily in the Zn-graded case. 2

The next theorem is the starting point for the comparison of Betti and Bass numbers. Its

corollary, which carries out the lattice complementation, is fundamental to the rest of the results

in this section.

Proposition 3.5 For any module N , µi,b(N) = βi,−b(N∧).

Proof: A module J is injective if and only if J∧ is flat, because

Hom(− , J) = Hom(− , Hom(J∧, S∧) ) = Hom(−⊗ J∧ , S∧).(1)

Indeed, the first term being an exact functor means that J is injective, while the last term being an

exact functor means that J∧ is flat, since Hom(−, S∧) is a priori a faithful exact functor. It follows

that a complex J · : 0→ J0 → J1 → · · · is an injective resolution of N inM if and only if (J ·)∧ is

a flat resolution of N∧. Substituting k for (−) in Equation (1) and applying Proposition 3.3 we get

Ext i(k,N) ∼= Tor i(k,N
∧)∧(2)

from which the result follows at once. 2

Corollary 3.6 µi,b(T/M) = βi,−b(MT ) for any monomial module M ⊆ T . 2
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The next few results are preliminary to the theorems relating the Betti numbers of I to the Bass

numbers of I (Theorem 3.12) and the Bass numbers of I [a] (Theorem 4.10).

Proposition 3.7 Let I be an ideal. Then

(i) βi,b ( Ĩ ) = 0 if b 6� aI .

(ii) βi,b ( Ĩ ) = 0 if b 6� 1.

(iii) βi,b ( Ĩ ) = βi,b ( I ) if 1 � b.

Proof: Given any submodule M ⊆ T , define for each b ∈ Zn the following simplicial subcomplex

of ∆:

Kb(M) = {F ∈ ∆ | xb−F ∈M} .
It is a result of [9] and [12] (and extended to the case M ⊆ T by [4]) that

βi,b(M) = dimk H̃i(Kb(M); k),

the dimension of the ith simplicial homology of Kb(M) with coefficients in k. To prove (i) and (ii) it

suffices to show that Kb(Ĩ) is a cone (and therefore acyclic) unless 1 � b � aI . If aI = (a1, . . . , an)

and bi ≥ ai+1, then it follows from Proposition 2.6(ii) that Kb(Ĩ) is a cone with vertex {i}, proving

(i). That Kb(Ĩ) is a cone with vertex {i} if bi ≤ 0 follows directly from the definition of Čech hull,

proving (ii). Finally, (iii) holds because Kb(Ĩ) = Kb(I) whenever b � 1. 2

Lemma 3.8 Let M ⊆ T . Then βi,b(M ) = βi,b(M/M ∩ m̃a+1 ) if b � a.

Proof: It follows from Example 2.7(ii) that (M ∩ m̃a+1)b = 0 if b � a, so the Taylor resolution of

it (see [16] for the original or [4], Proposition 1.5 for a treatment including submodules of T ) forces

βi,b(M ∩ m̃a+1 ) = 0 for all b � a. Applying Tor to the exact sequence

0→M ∩ m̃a+1 →M →M/M ∩ m̃a+1

yields the result. 2

Lemma 3.9 If i < n then Ext i(k, S/I) ∼= Ext i(k, T/I), and in the remaining case i = n we have

Extn(k, S/I) = k[1].

Proof: One can first calculate Ext i(k, S) =

{
k[1] if i = n
0 otherwise

from the Koszul complex and

Ext i(k, T ) = 0 for all i because T is injective in the category M. Using the long exact sequence of

Ext from 0→ S → T → T/S → 0 one finds that Ext i(k, S) ∼= Ext i−1(k, T/S).

From the above calculations and the long exact sequence of Ext arising from

0→ S/I → T/I → T/S → 0
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the lemma will follow if we can show that the map

Extn−1(k, T/S)→ Extn(k, S/I)

is an isomorphism. But S is a regular ring, so Extn(k, S/I) is nonzero a priori because of [5],

Proposition 3.1.14 and [5], Theorem 3.1.17, so it is enough to prove that the 1-dimensional vector

space Extn−1(k, T/S) ∼= Extn(k, S) ∼= k[1] maps surjectively, i.e. that Extn(k, T/I) = 0. Now

Extn(k, T/I) ∼= Extn+1(k, I) because of the exact sequence

0→ I → T → T/I → 0,

and Extn+1(k, I) = 0 because of the same [5] reference as above. 2

The next main result, Theorem 3.12, is really a rephrasing of an observation made in the proof

of [9], Theorem 5.2. While it is possible, by quoting the self-duality of the Koszul complex, to

extend the result to include all S-modules, the proof here demonstrates effectively the interaction

of Alexander duality with other kinds of duality. Aside from the intrinsic interest in its proof,

Theorem 3.12 will find an application in the proof of Theorem 4.10. Two preliminary results are

needed, the first of which will also be used in the proof of Proposition 4.6.

Lemma 3.10 With J = I+ma+1 we have J̃ T = I [a][a]. The same is true if I and I [a] are reversed.

Proof: The last statement is because of Proposition 2.12. By Example 2.7(ii) and Proposition 2.4,

I [a][a] = Ĩ T ∩ S[a] = (Ĩ + S[a] T )T = J̃ T . 2

The reader knowledgeable about linkage will recognize a hint of Theorem 2.1 in the next propo-

sition. Only the special case b = 0 is required in this section. However, the more general result is

a major component in the proof of Theorem 6.11.

Proposition 3.11 Let a � aI , J = I [a] + ma+1, and b ∈ Nn. Then

ExtnS

(
S[b]/ S[b]∩J̃ , S

)
=
(
I / I∩ma+b+1

)
[a + 1].

In particular, taking b = 0 yields Extn(S/J, S) ∼=
(
I/I∩ma+1

)
[a + 1].

Proof: The module T/J̃ is the k-dual of the finitely generated module I[a] by Lemma 3.10, and is

hence artinian by Matlis duality, cf. [7], Theorem 2.1.4. Thus our module S[b]/ S[b]∩J̃ ⊆ T/J̃ is

also artinian, and (obviously) finitely generated, as well. Since the canonical module of S is S[−1]

by [7], Corollary 2.2.6, local duality (in the form of [7], Theorem 2.2.2) applied to the zeroeth local
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cohomology module implies the first equality of the following:

ExtnS

(
S[b]/ S[b]∩J̃ , S

)
=
(
S[b]/ S[b]∩J̃

)∧
[1] by local duality

=
(
J̃ T/ J̃ T∩S[b]T

)
[1] by Proposition 2.4(vii)

=
(
I/ I∩S[a + b]T

)
[a + 1] by Lemma 3.10 and shifting by [−a][a]

=
(
I/ I∩ma+b+1

)
[a + 1] by Example 2.7(ii). 2

Given an artinian ideal J , the list of Betti numbers for the canonical module Extn(S/J, S[−1]) of

S/J is essentially the reverse of the list of Betti numbers for J ; see, for instance, [5], Corollary 3.3.9.

On the other hand, there is the lattice-complementation view of Alexander duality, which emerges in

Corollary 3.6 as a relation between the Betti numbers of a monomial module and the Bass numbers

of its T -dual. These two dualities can be combined to compare the Betti numbers of I to the Bass

numbers of the same ideal I:

Theorem 3.12 For all i ∈ Z and b ∈ Zn,

βn−i ,b (S/I ) = µ i ,b−1 (S/I ).

Proof: The case i = n follows from the calculations of Lemma 3.9, so assume from now on that

i ≤ n−1. In particular, we can calculate the Bass numbers from T/I instead of S/I by Lemma 3.9.

Let a = aI + 1. All of the Betti numbers are zero in degrees b 6� a by Proposition 3.7(i) and (iii).

As for the Bass numbers, we can use the fact that, with J := I [a] + ma+1, we have I T = J̃ [a] by

Lemma 3.10. It follows that µi,b−1(T/I ) = βi,1−b( J̃ [a] ) = βi,a+1−b( J̃ ) by Corollary 3.6, and then

Proposition 3.7(ii) implies that these numbers are zero if b 6� a.

From now on, assume b � a and 0 ≤ i ≤ n− 1. Let J = I [a] + ma+1 and calculate

µ i ,b−1 (S/I ) = µ i ,b−1 (T/I ) by Lemma 3.9 and i ≤ n− 1

= β i ,a+1−b ( J̃ ) by Corollary 3.6, since I T = J̃ [a]
= β i ,a+1−b ( J ) by Proposition 3.7(iii) and b � a
= β i+1 ,a+1−b (S/J ) since i ≥ 0

= βn−i−1 ,b−1−a

(
Extn(S/J, S)

)
since S is Gorenstein and S/J is artinian

= βn−i−1 ,b

(
(I/I∩ma+1)

)
by Proposition 3.11

= βn−i−1 ,b ( I ) by Lemma 3.8 and b � a
= βn−i ,b (S/I ) since i ≤ n− 1

proving the theorem. 2
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4 Localization and restriction

This section aims to reveal the equality (Theorem 4.10) between Betti numbers of I and localized

Bass numbers (Definition 4.8) of I [a]. This equality generalizes Theorem 2.13. As a consequence

of the equality, an inequality between Betti numbers of I and I [a] is obtained in Theorem 4.13,

generalizing to arbitrary monomial ideals an inequality of [2] which was proven for radical ideals.

The next proposition should be thought of as the nonlocalized precursor to Theorem 4.10(i).

Proposition 4.1 Let I be an ideal and a � aI . If 1 � b � a then βi,b( I ) = µi,ba−1(S/I [a] ).

Proof: If, to start with, b � a, then

βi ,b (M ) = µi ,−b

(
(M/M ∩ m̃a+1)∧

)
by Lemma 3.8 and Proposition 3.5

= µi ,−b

(
S[a]/S[a] ∩MT

)
by Proposition 2.4(vii) and Example 2.7(ii)

= µi ,a−b

(
S/MT [−a] ∩ S

)
.

Substituting M = Ĩ we get βi ,b( Ĩ ) = µi ,a−b(S/I [a] ) if b � a, and when the assumption 1 � b is

added, a− b = ba − 1 and the result is a consequence of Proposition 3.7(iii). 2

Theorem 4.10 is the combination of the previous proposition with localization and restriction of

scalars. The following definitions will provide concise notation for these operations, which will be

needed also for the definition of Bass numbers at primes other than m (Definition 4.8). Recall that

F = {1, . . . , n} \ F = 1− F .

Definition 4.2 Let ∆ be the (n− 1)-simplex on the vertices {1, . . . , n} and F ∈ ∆. Define

(i) N(−F ) := S[x−F ]⊗S N for arbitrary modules N
(ii) S[F ] := k[xi | i ∈ F ] a ZF-graded k-subalgebra of S
(iii) N[F ] :=

⊕
b∈ZF Nb a ZF-graded S[F ]-module

(iv) N(F ) := N(−F )[F ]

The operations on N listed above are all exact and commute with sums. They should be thought

of as: (i) homogeneous localization at mF , (iii) taking the “degree zero part” of N with respect to

F , and (iv) taking the “degree zero part of the homogeneous localization at mF ” as in algebraic

geometry. In (ii) and (iii), the copy of ZF may be thought of as sitting inside Zn in the obvious

way: as the space spanned by the basis vectors in the support of F . Thinking of ZF this way can

cause notational problems, however. For instance, any Zn-graded S-module N can be thought of

as a ZF -graded S[F ]-module which in degree b ∈ ZF is⊕
c·F = b

Nc =
⊕

b′ ∈ZF

Nb + b′ ,
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where c · F denotes the restriction to F as in Section 1. Note that the right-hand side gives this

vector space the structure of a ZF -graded S[F ]-module. The convention will be the following:

If N is a ZF -graded S[F ]-module and b ∈ ZF , the graded piece of N in degree b will be

denoted Nb·F . That way, if N happens also to be a Zn-graded S-module, the usual notation

Nb can retain its old meaning as the degree b part in the Zn-grading.

Even if b 6∈ ZF it will sometimes be convenient to use Nb·F to denote the b · F graded piece in

the ZF -grading; i.e. with c = b · F ∈ ZF , we set Nb·F := Nc·F . The next Lemma follows from the

definitions and the convention above. In each of (i)–(v), the objects are ZF -graded S[F ]-modules, but

in (i), the objects may also be considered as ZF -graded S[F ]-modules or even ZF ×ZF = Zn-graded

S[F ] ⊗k S[F ] = S-modules.

Lemma 4.3 For any F ∈ ∆,

(i) M(−F ) = T[F ] ⊗k M(F ) = S(−F )⊗S(F )
M(F )

(ii) M[F ] = M0·F

(iii) M [a][F ] = Ma·F [a · F ]

(iv) (Ĩ )[F ] = Ĩ [F ]

(v) (M T )[F ] = (M[F ])
T[F ]

where the right-hand sides of (iv) and (v) are, respectively, the Čech hull and T -dual over S[F ]. 2

For submodules M ⊆ T the various gradings allow for convenient characterizations of localiza-

tion as in Definition 4.2(iv). They use the fact that for any b ∈ Zn, Mb·F is naturally a submodule

of T[F ] = T(F ).

Proposition 4.4 Let M be a monomial module.

(i) M(F ) =
⋃

b∈ZF

Mb·F .

If M can be generated in degrees c satisfying c · F � a · F then

(ii) M(F ) = Ma·F .

Proof: (i) Observe that M ⊆ M(−F ) ⊆ T because everything is torsion-free. Thus, if b ∈ ZF ,

then multiplication by x−b induces an inclusion Mb·F → M(F ). For the other inclusion, note that

any monomial in M(F ) can be written as xb · xc for some xc ∈M and b = −(c · F ) ∈ ZF .

(ii) The collection {Mb·F}b∈ZF of S[F ]-submodules of T[F ] is partially ordered by inclusion because

M is a module. The union in (i) stabilizes after a · F if M is generated in degrees c satisfying

c · F � a · F . 2

E. Miller Alexander Duality for Monomial Ideals and their Resolutions

Rejecta Mathematica Vol. 1, No. 1, July 2009

This work is published under the Creative Commons Attribution-NonCommercial License. http://creativecommons.org/licenses/by-nc/2.5/legalcode

37

http://math.rejecta.org
http://creativecommons.org/licenses/by-nc/2.5/legalcode


z

y x

y

z

x

{ y , z }F = 
z

y

= ( 4 , 4 , 2 )

I[F]

.Ib Fb

I[F]

.Ib F
.Ib F

.Ib F

Figure 3

Example 4.5 Figure 3 illustrates some parts of Definition 4.2 and Lemma 4.3 in a specific case. For

notation, x, y, and z are identified with 1, 2, and 3 ∈ {1, . . . , 3} = ∆. The face F is {y, z} = {2, 3},
while b = (4, 4, 2). The small colored dots represent generators or irreducible components in the

restricted ideals. It is not true that b � aI , so Proposition 4.4 does not apply; nevertheless,

Ib·F = I(F ) for these b, I, and F . Figure 3 can also be used as a test case for Proposition 4.6.

Proposition 4.6 (I [a])(F ) = (I [F ])
[a·F ] as ideals in S(F ) = S[F ]. In words, dualizing and then

localizing is the same as restricting and then dualizing.

Proof: It is enough to show that (I [a])(F )[a · F ] = (I [F ])
[a·F ][a · F ]. Now

(I [a])(F )[a · F ] = (I [a])a·F [a · F ] by Proposition 4.4(ii) and Proposition 2.12

= (I [a][a])[F ] by Lemma 4.3(iii)

=
((

(I + ma+1)̃
)T)

[F ]
by Lemma 3.10,

and one can use the rules 4.3(v) and then 4.3(iv) for interchanging the various operations to get

the last line to equal (
(I[F ] + ma·F+F

[F ])̃
)T[F ]

,

where (−)T[F ] is T -duality over S[F ] as in Lemma 4.3(v). Another application of Lemma 3.10 (over

S[F ] this time) gives the desired result. 2

Proposition 4.7 Let I ⊆ S and b ∈ ZF . Then βi,b(I ) = βi,b·F (I[F ]).

Proof: Let F be the Taylor resolution of I (see the proof of Lemma 3.8 for references). Then F[F ]

is the Taylor resolution of I[F ]. Furthermore, (k ⊗S F)[F ] = k ⊗S[F ]
F[F ] because if b ∈ Nn then(

k ⊗S S[−b]
)

[F ]
= k ⊗S[F ]

S[−b][F ] =

{
k[−b] if b ∈ ZF

0 if b 6∈ ZF .
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Thus the Betti numbers in question are calculated from the same complex of k-vector spaces. 2

Definition 4.8 (Bass numbers for arbitrary monomial primes) Given a module N and a

degree b ∈ ZF , the i th Bass number of N with respect to F (or the prime ideal mF ) in degree

b is defined as

µi,b(F,N) := dimk

(
Ext iS(F )

(k,N(F ))b

)
.

Remark 4.9 When F = 1 this definition agrees with the Bass numbers of Definition 3.1.

Now comes the main result of this section. It can be thought of as a far-reaching generalization

of Theorem 2.13, which is a special case, pending the appropriate interpretation of Bass numbers—

see Proposition 4.12 and the second proof of Theorem 2.13 that follows it. In part (i) of the next

theorem, the case where b has full support is Proposition 4.1.

Theorem 4.10 If 0 6= F � b � a·F then for all i ∈ Z we have

(i) βi ,b(I) = µi ,ba−F (F, S/I [a])
(ii) µn−i−1 ,b−1(S/I) = µi ,ba−F (F, S/I [a])
(iii) βi ,b(I) = β|F |−i−1 ,ba(I [a]

(F )).

In any of these formulas, I and I [a] can be switched, and the same goes for b and ba.

Proof: Statements (ii) and (iii) follow easily from (i), in view of Theorem 3.12 and the fact that

βi,b(I) = βi+1,b(S/I) when b 6= 0. To prove (i), note that ba = (b · F )a·F , so

β i ,b ( I ) = β i ,b·F ( I [F ] ) by Proposition 4.7

= µ i ,ba−F (S[F ]/I [F ]
[a·F ] ) by Proposition 4.1

= µ i ,ba−F (S(F )/I
[a]

(F ) ) by Proposition 4.6

= µ i ,ba−F (F , S/I [a] ) by definition

since (−)(F ) is exact. Note that the Bass number in the penultimate line is with respect to the

maximal ideal of S(F ). The last statement of the theorem is true because (ba)a = b and (I [a])[a] = I,

and because imposing the condition on b is equivalent to imposing the same condition on ba. 2

Remark 4.11 Part (i) of the theorem can be thought of as the generalization to arbitrary monomial

ideals of the formulas in [6], Proposition 1 and [2], Theorem 2.4, using [9], Theorem 5.2 and the

fact that links come from localization ([9], Proposition 5.6).
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As a consequence of the theorem, the list of Betti numbers of Ia will be independent of a, though

the Zn-degrees in which they occur will vary with a. Indeed, the list of Betti numbers of Ia is just

the list of (localized) Bass numbers of I by part (i) of the theorem. Thus the collection of ideals

that are dual to I are very closely related homologically. This will be highlighted again in Section 5

in terms of various geometrically defined resolutions.

Before the above remark, the symbol Ia had not appeared in this section (or the last) without

brackets on the a; that is, none of the results have been logically dependent on Definition 1.5 or

Theorem 2.13. Therefore, Theorem 4.10 can be used to give a second proof of Theorem 2.13. In

fact, this “second proof” was discovered before the more elementary proof in Section 2. The next

proposition is what allows the irreducible decomposition to be read off of the zeroeth Bass numbers

just as the minimal generators are read off the zeroeth Betti numbers.

Proposition 4.12 Given an ideal I ⊆ S the following are equivalent for b ∈ ZF :

(i) mb is an irredundant irreducible component of I.
(ii) µ0,b−F (F, S/I) = 1.
(iii) µ0,b−F (F, S/I) 6= 0.

Proof: Let I =
⋂
j Qj be the (unique) irredundant decomposition of I into irreducible ideals Qj.

Then we have an injection 0 → S/I → ⊕
j S/Qj which, by the proofs of [17], Propositions 3.16

and 3.17, induces an isomorphism

HomS(S/mF, S/I)(−F )→
⊕
j

HomS(S/mF, S/Qj)(−F );(3)

this is because the functor ∆p(·)p in the [17] reference is easily seen to be Hom (R/p, ·)p (so we can

take p = mF ). Using Lemma 4.3(i) we can move the localization into and out of the Hom: for any

finitely generated S-modules L and N ,

HomS

(
L,N

)
(−F ) ∼= HomS(−F )

(
L(−F ), N(−F )

)
∼= S(−F )⊗S(F )

HomS(F )

(
L(F ), N(F )

)
∼= T[F ] ⊗k HomS(F )

(
L(F ), N(F )

)
.

Treating these as ZF -graded S[F ]-modules and taking the degree 0 ·F part in the last line yields

HomS(F )

(
L(F ), N(F )

)
. Applying this procedure to Equation (3) reveals an isomorphism

HomS(F )

(
k, (S/I)(F )

) ∼= ⊕
j

HomS(F )

(
k, (S/Qj)(F )

)
.

Since we can calculate

µ 0,b−F (F, S/Qj) =

{
1 if Qj = mb

0 otherwise
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the proposition follows from the definition of Bass numbers. 2

Second proof of Theorem 2.13: Every generator xb of I corresponds to a nontrivial zeroeth Betti

number of I which satisfies the condition F � b � a · F for F =
√

b because I ⊆ S and a � aI .

After applying Theorem 4.10(i) and the previous proposition, we can conclude that each generator

of I does indicate the presence of an appropriate irreducible component of I [a]. To show that each

nontrivial zeroeth Bass number of I [a] comes from some Betti number of I, we demonstrate that

if b ∈ ZF and µ0,b−F (F, S/I) 6= 0 then F � b � a · F . Localizing at mF , we may assume that

F = 1. Clearly b � 1 since mb is m-primary, so the desired result falls out of Theorem 3.12 and

Proposition 3.7. 2

Next on the agenda is the generalization to arbitrary monomial ideals of an inequality of [2] for

squarefree ideals. The topological argument involving links employed there is preempted here by a

simple algebraic observation involving localization (which gives links in the squarefree case, see [9],

Proposition 5.6).

Theorem 4.13 If a � aI and F � b � a·F then

βi ,b(I) ≤
∑

c·F = ba

β|F |−i−1 , c (Ia).

Proof: Let F be a minimal free resolution of Ia. Localizing at mF we obtain a free resolution F(F )

of Ia
(F ) over S(F ). The generators of F(F ) as a free S(F )-module are in bijective correspondence with

the generators of F itself. Specifically, for any b′ ∈ ZF we find that S[c](F ) = S(F )[b
′ · F ] if and

only if c · F = b′. Thus the number of summands of F(F ) in homological degree |F | − i − 1 and

ZF -degree ba is equal to ∑
c·F = ba

β|F |−i−1 , c (Ia)

since F is minimal. On the other hand, the number of such summands is clearly ≥ β|F |−i−1,ba(Ia
(F )),

with equality if and only if F(F ) is minimal. Since this last number is equal to βi,b(I) by Theo-

rem 4.10, we are done. 2

Corollary 4.14 (Bayer-Charalambous-Popescu) If I is squarefree then

βi ,b(I) ≤
∑

b�c�1

β|b|−i−1 , c(I
∨)

for 0 ≤ i ≤ n− 1 and 0 � b � 1.

Proof: This is a special case of the theorem once it is noted that (i) β|b|−i−1,c(I
∨) = 0 unless

0 � c � 1, and (ii) 0 � c and c · √b = b imply c � b. 2
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5 Duality for cellular complexes: the cohull resolution

This section explores the effect of Alexander duality on various geometrically defined free resolu-

tions, in the spirit of [3], [4], and [15]. First, the concept of a geometrically defined resolution is

broadened past cellular resolutions to include relative cocellular resolutions (Definition 5.3). The

key result (Theorem 5.8) is presented, though the majority of its proof occupies Section 6. As

an application, it is shown how irreducible decompositions can be specified by cellular resolutions

(Theorem 5.12). The culmination of these ideas is a new canonical geometric resolution for mono-

mial ideals (Definition 5.15). It is called the cohull resolution, and is defined by applying Alexander

duality to the hull resolution of [4]. As a special case, the co-Scarf resolution of a cogeneric mono-

mial ideal of [15] is seen to be the cohull resolution (Theorem 5.23), and is thus Alexander dual to

the Scarf resolution of a generic monomial ideal [3]. A number of examples are presented, including

permutahedron and forest ideals.

Conventions regarding grading and chain complexes:

A chain complex of S-modules

F : · · · → Ni+1 → Ni → Ni−1 → · · · , Ni in homological degree i,

is viewed as a (homologically) Z-graded S-module
⊕

Ni with a differential ∂ of degree −1.

If “ [a]” is attached to F then each summand is to be shifted in its Zn-grading to the left by

a, while “ (j)” indicates that the homological degrees are to be shifted down by j, yielding

the notation

F[a](j) : · · · → Ni+1[a]→ Ni[a]→ Ni−1[a]→ · · · , Ni in homological degree i− j.

Here, N [a]b = Na+b for any S-module N by definition. Taking the S-dual F∗ := Hom(F, S)

changes ∂ to its transpose δ, and makes homological degrees into cohomological degrees,

which are the negatives of homological degrees:

F∗ : · · · ←N∗i+1←N∗i ←N∗i−1← · · · , N∗i in homological degree − i
= cohomological degree i.

Labelled cell complexes provide compact vessels for recording the monomial entries in certain

Zn-graded free resolutions of an ideal. [4] introduces this notion in the context of monomial modules,

but attention is restricted to boundary operators of the cell complex. The definitions below extend

the concept to include coboundary operators, as well. For the reader’s convenience, the definition of

a labelled regular cell complex and the cellular free complex it determines is recalled briefly below,

although the reader is urged to consult [4], Section 1 for more details.

Let Λ ⊆ Zn be a set of vectors, and let X be a regular cell complex whose vertices are indexed

by the elements of Λ. For c, c′ ∈ Zn, define the join c ∨ c′ to be the componentwise maximum,

E. Miller Alexander Duality for Monomial Ideals and their Resolutions

Rejecta Mathematica Vol. 1, No. 1, July 2009

This work is published under the Creative Commons Attribution-NonCommercial License. http://creativecommons.org/licenses/by-nc/2.5/legalcode

42

http://math.rejecta.org
http://creativecommons.org/licenses/by-nc/2.5/legalcode


i.e. c ∨ c′ is the smallest vector which is greater than or equal to both c and c′ in each coordinate:

(c ∨ c′)i = max(ci, c
′
i). Given a face F ∈ X, define the label aF of F to be the join

∨
v∈F av of the

labels on the vertices in F , where av ∈ Λ is the element corresponding to v. To avoid confusion,

the symbol |X| will be used to denote the unlabelled underlying cell complex of the labelled cell

complex X.

We assume that |X| comes equipped with an incidence function ε(F, F ′) ∈ {1, 0,−1} defined on

pairs of faces, which is used to define the boundary map in the oriented chain complex of |X| (with

coefficients in k). For each F ∈ X, let SF be the free S-module with one generator F in degree aF .

The cellular complex FX is the homologically and Zn-graded chain complex of S-modules

FX =
⊕

F∈X, F 6=∅
SF with differential ∂F =

∑
G∈X,G 6=∅

ε(F,G)
mF

mG

·G,

where mF := xaF . The homological degree of the basis vector F ∈ SF is the dimension of F ∈ |X|.
If FX is acyclic, it will be said that X supports a free resolution of the module 〈xav | v ∈ X is a

vertex 〉.

Remark 5.1 In [4] it is assumed that the elements of Λ are pairwise incomparable (as elements

in the poset Zn), but Λ is not assumed to be finite. Here, however, Λ will always be finite, but

pairwise incomparability is not assumed. It is easily verified that all of the results in [4], Section 1

remain true under these hypotheses.

Definition 5.2 (Relative Cellular Complexes) A relative cellular complex F (X,Y ) is the quo-

tient of a cellular complex FX supported on a labelled regular cell complex X by a subcomplex FY
for some regular cell subcomplex Y ⊆ X, with the labelling on Y induced by the labelling on X.

Definition 5.3 (Relative Cocellular Complexes) A relative cocellular complex F (X,Y ) is ob-

tained by taking F∗(X,Y ) for a pair (X, Y ) of labelled relative regular cell complexes. If Y is empty,

F (X,Y ) may be denoted FX and called a cocellular complex supported on X.

Remark 5.4 The relative cocellular complex F (X,Y ) can be viewed as the homogenization of the

relative cochain complex of the pair (X, Y ), as long as the label on a dual face F∗ is the negative−aF
of the label on the face F . The coboundary can then be written as δG∗ =

∑
(F∈X,F 6=∅) ε(F,G)mF

mG
·F∗.

Definition 5.5 Given a labelled regular cell complex X and a vector b ∈ Zn, define the following

two labelled subcomplexes of X:

(i) XB(b) := {F ∈ X | aF � b}, the positively bounded subcomplex of X with respect to b.
(ii) XU(b) := {F ∈ X | aF 6� b}, the negatively unbounded subcomplex of X with respect to b.

Finally, let XU := XU(1) be simply the negatively unbounded subcomplex of X.
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Example 5.6 Let I be as in Example 1.8. The labelled complex X in Figure 4 is the Scarf

complex [3] of I + m(5,6,6) (see also Example 5.14, below). Hence FX is a minimal free resolution

by [3], Theorem 3.2. In this case, (5, 6, 6) = aI + 1, but z5 is already in I. The label “215” in the

diagrams is short for (2,1,5). The subcomplex XB(4, 5, 5), which is the Scarf complex of the ideal

I itself, is also depicted in Figure 4 (see Proposition 5.7, below). The subcomplex XU is depicted

in Figure 5 along with a representation of the labelled relative cellular complex (X,XU) and the

relative cocellular complex F(X,XU ) of free S-modules determined by it. For this, the edges have

been oriented towards the center and the faces counterclockwise. The left copy of S8 represents

the 2-cells in clockwise order starting from 361, the right copy of S8 represents the edges clockwise

starting from 161, and the copy of S represents the lone vertex. The other vertices and edges are

not considered since they lie in the subcomplex XU . It is not a coincidence that the negatively

unbounded subcomplex of X is the topological boundary of X—this will always happen for the

Scarf complex of a generic artinian monomial ideal, cf. Theorem 5.18. 2

Recall that aI is the exponent on the least common multiple of the minimal generators for I.

Suppose that we have a cellular resolution FX of the ideal I + ma+1 with a � aI .

Proposition 5.7 FXB(b) is a cellular resolution of I for any b such that aI � b � a.

Proof: With the conditions on b, the ideal I is generated by all monomials in I + ma+1 whose

exponent is � b, so the result is a direct consequence of [4], Corollary 1.3. 2

Duality for cellular resolutions says that if the cellular resolution FX of I + ma+1 has minimal

length, a resolution for the Alexander dual Ia with respect to a can also be recovered from X:

Theorem 5.8 If the cellular resolution FX of I+ma+1 has length n−1 then F (X,XU )[−a−1](1−n)

is a relative cocellular resolution of Ia. Furthermore, this dual resolution is minimal if FX is.
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x2 −y 0 0 0 0 0 0
0 x −y2 0 0 0 0 0
0 0 x −y2 0 0 0 0
0 0 0 z −x3 0 0 0
0 0 0 0 z3 −x 0 0
0 0 0 0 0 y −z 0
0 0 0 0 0 0 y2 −z
−z2 0 0 0 0 0 0 y2





y5

x2y4

x3y2

x4

xz
z4

yz3

y3z2


0 ← S8 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S8 ←−−−−−−− S ← 0

Figure 5

Proof: The first statement will be a direct consequence of Theorem 6.11, below; the necessary

assumption here that FX has length n−1 is what makes F (X,XU )[−a−1](1−n) a resolution instead

of just a free complex—that is, there are no terms in negative homological degrees. The construction

of F (X,XU ) from FX preserves minimality because the matrices defining the differential of the former

are submatrices of the transposes of those defining the latter, and we need only check that these

entries are in m. 2

Remark 5.9 (i) The hypothesis of the theorem requires that X have dimension (n − 1), so that

FX has minimal length, but it does not require that FX actually be a minimal resolution.

(ii) It can be shown that XU may be replaced in the theorem by XU(b + 1) for any b satisfying

0 � b � aI − aI∨ . Here, again, is the mysterious invariant from the remark after Corollary 2.14.

In most cases of interest, though, XU = XU(b) for all such b.
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Example 5.10 The free complex in Figure 5 is the minimal free resolution of the ideal I∨ from

Example 1.8. The reader may check, for instance, that the product of the large matrix in Figure 5

with the list of generators for I∨ (which may be treated as a matrix with one row) is zero. Note that

the homological and Zn-graded shifts promised by Theorem 5.8 aren’t visible from the matrices. 2

Theorem 5.8 affords a generalization of [3], Theorem 8.3 on reading irreducible decompositions

off of cellular resolutions. We will need the following.

Lemma 5.11 If the labelled cell complex X supports a minimal free resolution of an artinian ideal

J ⊆ S then X is pure of dimension n− 1.

Proof: Any facet has dimension > 0, so suppose that F is a facet of dimension d > 0. Denote by

F∗ the basis element of the cocellular complex FX . The modules Ext ·(J, S) can be calculated as the

cohomology of FX by definition, and the coboundary δ(F∗) is zero because F is a facet. Moreover,

the image of δ is contained in mFX by minimality of FX , whence F∗ is not itself a coboundary.

Thus F∗ represents a nonzero element of Extd(J, S) ∼= Extd+1(S/J, S). It follows that d = n − 1

because S/J has only one nonzero such Ext module [5], Proposition 3.3.3(b)(i). 2

For the statement of the next theorem, the following notation is convenient. Suppose a � aI
and define, for any 1 � b � a + 1, the bounded part bB := (a + 1 − b)a of b with respect to a to

be the vector whose i th coordinate is bi if bi ≤ ai and zero if bi = ai + 1.

Theorem 5.12 Let FX be a minimal cellular resolution of I + ma+1. Then the facets of X are in

bijection with the irredundant irreducible components of I, and the intersection
⋂
F m(aF )B over all

facets F ∈ X is an irredundant irreducible decomposition of I.

Proof: It follows from Lemma 5.11 that under these conditions X must be pure of dimension

n − 1. Using this, it suffices to show that the label on any facet is � 1, for then each facet

corresponds to a minimal generator of Ia by Theorem 5.8 and we are done by Proposition 1.7.

Suppose, then, that aF is ≤ 0 in some coordinate for some facet F ; say (aF )n = 0. For t >> 0

consider Y := XB(t, t, . . . , t, 0), which gives a resolution of J := (I + ma+1)∩ k[x1, . . . , xn−1] by [4],

Corollary 1.3. The resolution FY is minimal because FX is, and Y has dimension n − 1 because

F ∈ Y . On the other hand, J is an artinian ideal of k[x1, . . . , xn−1], which contradicts Lemma 5.11

(with n replaced by n− 1). 2

The major consequence of Theorem 5.8 is the construction of the cohull resolution (Defini-

tion 5.15) from the hull resolution [4], Section 2. Therefore, we recall here the definition of the hull

complex. Let t > (n+ 1)! and define tb := (tb1 , . . . , tbn). The convex hull of the points {tb | xb ∈ I}
is a polyhedron Pt whose face poset is independent of t. It is shown in [4] that the vertices of Pt
are given by those tb such that xb is a minimal generator of I. The hull complex hull(I) is defined

to be the bounded faces of Pt, but it may also be described as those faces of Pt admitting a strictly

positive inner normal. The hull complex is labelled via the labels on its vertices.
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Theorem 5.13 (Bayer-Sturmfels) The free complex Fhull(I) is a cellular resolution of I. 2

Example 5.14 Let Λ be the set of exponents on the minimal generators of a generic monomial

ideal I, and let X be the labelled simplex with vertices in Λ. The Scarf complex of I is the labelled

subcomplex ∆I ⊆ X determined by

∆I = {F ∈ X | aF = aG ⇒ F = G}.

It is minimal and coincides with the hull resolution of I by [4], Theorem 2.9. See Example 5.6. 2

Definition 5.15 (The cohull resolution) The cohull resolution cohulla(I) of an ideal I with re-

spect to a � aI is defined to be the relative cocellular resolution F (X,XU )[−a − 1](1 − n), where X

is the hull complex of Ia + ma+1. The canonical cohull resolution, or simply the cohull resolution

cohull(I) of I is obtained by taking a = aI .

The cohull resolution, like the hull resolution, is a possibly nonminimal resolution that preserves

some of the symmetry (in the generators and irreducible components) of an ideal.

There are some geometric properties of hull resolutions of artinian ideals that make cohull

resolutions a little more tangible. Suppose, for instance, that J is an artinian monomial ideal, with

xd11 , . . . , x
dn
n among its minimal generators. Choose t > (n+ 1)!, and let v1, . . . , vn be the vertices of

the polyhedron Pt determined by these minimal generators. The vertices {vi} of Pt span an affine

hyperplane which will be denoted by H.

Fix a strictly positive inner normal ϕG for each G ∈ hull(J). Recall that Pt is contained in the

(closed) polyhedron 1 + Rn
+ (since monomials in S have no negative exponents). Each face G ∈

hull(J) spans an affine space which does not contain the vector 1 ∈ Rn because the hyperplane

containing G and normal to ϕG does not contain 1. Therefore the projection π from the point 1 to

the hyperplane H induces a homeomorphism hull(J)→ π(hull(J)). In fact,

Proposition 5.16 If J is artinian, π(hull(J)) is a regular polytopal subdivision of the simplex

H ∩ Pt.

Proof: That H ∩Pt ⊂ 1+Rn
+ is a simplex follows because it is convex and contains v1, . . . , vn. Now

π induces a map of the boundary ∂Pt → H ∩Pt which is obviously surjective. Suppose that π(w) is

in the interior of H∩Pt for some w ∈ ∂Pt. It is enough to show that if a nonzero support functional

ϕ attains its minimum on Pt at w then ϕ is strictly positive. All coordinates of ϕ are ≥ 0 a priori

because it attains a minimum on Pt; but if the i th coordinate of ϕ is zero then 〈ϕ, vi〉 < 〈ϕ,w〉 and

ϕ cannot be minimized at w. 2

Remark 5.17 This generalizes the result [3], Corollary 4.5 for generic artinian monomial ideals,

in view of [4], Theorem 2.9. Regular subdivisions here are as in [19], Definition 5.3.

E. Miller Alexander Duality for Monomial Ideals and their Resolutions

Rejecta Mathematica Vol. 1, No. 1, July 2009

This work is published under the Creative Commons Attribution-NonCommercial License. http://creativecommons.org/licenses/by-nc/2.5/legalcode

47

http://math.rejecta.org
http://creativecommons.org/licenses/by-nc/2.5/legalcode


We arrive at the following characterization for artinian hull complexes:

Theorem 5.18 If X is the hull complex of an artinian monomial ideal, then |X| is a simplex and

the negatively unbounded complex XU is the topological boundary of X.

Proof: By the previous proposition, it suffices to show that a face G of the hull complex of any

(not necessarily artinian) ideal has a label without full support if and only if it is contained in

the topological boundary of the shifted positive orthant 1 + Rn
+. But this holds because the i th

coordinate of aG is zero if and only if every vertex of G (and hence every point in G) has i th

coordinate 1. 2

Although cohull resolutions are relative cocellular by definition, they can frequently be viewed

as cellular resolutions, as well. In fact, with a slight weakening of the notion of labelled cell complex,

all cohull resolutions are weakly cellular. To be precise, define a weakly labelled cell complex to be

the same as a labelled cell complex, except that instead of requiring that the label aF be equal

to the join
∨
v∈F av, we require only that aF �

∨
v∈F av whenever dimF > 0. A free complex or

resolution is called weakly cellular if it is supported on a weakly labelled cell complex.

Theorem 5.19 The cohull resolution of I with respect to a is weakly cellular for any a � aI .

Proof: Let J = I + ma+1 and assume the notation from after Definition 5.15. Define Qt to be the

intersection of Pt with the closed half-space containing the origin and determined by the hyperplane

H. Then Qt is a polytope which may also be described as the convex hull of (all of) the vertices

of Pt. Furthermore, the bounded faces of Pt are simply those faces of Qt which admit a strictly

positive inner normal. Thus X := hull(J) is a subcomplex of the boundary complex of Qt, as is the

boundary ∂X.

Let Y ⊂ ∂Qt be the subcomplex generated by the facets of Qt whose inner normal is not

strictly positive. Denote chain and relative cochain complexes over k by C. (−) and C·(−,−). Then

Y ∩ X = ∂X and the C·(Qt, Y ) = C·(X, ∂X). For elementary reasons, C·(Qt, Y ) ∼= C. (X∨) for

some subcomplex X∨ of the polar polytope Q∨t (use, for instance, the methods of [19], Sections 2.2–

2.3). Note that the isomorphisms will exist regardless of the incidence functions in question, by [5],

Theorem 6.2.2. That X∨ is weakly labelled follows from the isomorphism C. (X∨) ∼= C·(X, ∂X) and

the remark after Definition 5.3. Indeed, the condition F ⊇ G⇒ aF � aG for faces F,G ∈ (X, ∂X)

is equivalent to the condition F∨ ⊆ G∨ ⇒ −aF � −aG for faces of X∨, and this need only be

applied when F is a facet containing G and F∨ is a vertex of G∨. 2

Proposition 5.20 If a weakly cellular resolution is minimal, it is cellular. In particular, if a cohull

resolution is minimal, it is cellular.

Proof: Let (F̃, ∂̃) denote the augmented complex FX → I → 0, where X is a weakly labelled

complex supporting a free resolution of I. We show that if G ∈ X then aG �
∨
v∈G av implies F is not
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minimal. This is vacuous if dimG = 0, so assume dimG has minimal dimension ≥ 1, and suppose

that aG−ei �
∨
v∈G av. Then ∂̃(G) = xiy for some y ∈ F̃ because dimG is minimal. It follows that

xi∂̃(y) = ∂̃(xiy) = 0, whence ∂̃(y) = 0 because F̃ is torsion-free. Thus ∂̃(G) ∈ xiker(∂̃) ⊆ m · ker(∂̃)

does not represent a minimal generator of ker(∂̃) by Nakayama’s Lemma for graded modules. 2

Remark 5.21 For cohull resolutions the proposition is probably true without the hypothesis of

minimality, but a proof (which would likely be geometric instead of algebraic) has not been found.

In particular, all cohull resolutions in the examples below are cellular. Cellularity of the cohull

resolution is equivalent to the following more concrete statement: the label on any interior face of

the hull complex of an artinian ideal is the greatest common divisor of the labels on the facets that

contain it.

Example 5.22 (continuation of Example 1.9) The minimal resolution of the permutahedron ideal

I of Example 1.9 is, by [4], Example 1.9, the hull resolution, which is supported on a permutahedron.

The minimal resolution of I + m(n+1)1 is also the hull resolution, and is supported on the complex

X which may described as follows.

There are two kinds of faces of X. The first kind are those that make up the boundary ∂X; these

are indexed by the proper nonempty faces F ∈ ∆ and have vertices t(n+1)ei ∈ Pt for i ∈ F (recall

from Section 1 that ei denotes the i th basis vector of Zn and ∆ = {1, . . . , n} is the (n−1)-simplex).

On the other hand, the interior p-faces of X are in bijection with the chains

∅ ≺ F1 ≺ F2 ≺ · · · ≺ Fn−p(4)

of faces of ∆, where Fn−p might (or might not) equal ∆. Note that the interior faces of X for which

Fn−p = ∆ are faces of the permutahedron itself.

More generally, an interior p-face G given by (4) for which Fn−p 6= ∆ is affinely spanned by the

permutahedral (p−1)-face G′ : ∅ ≺ F1 ≺ · · · ≺ Fn−p ≺ ∆ and the “artinian” vertices {t(n+1)ei |
i 6∈ Fn−p} of Pt. In fact, a functional which attains its minimum (in Pt) on G may be produced

directly. For this purpose, define for any F ∈ ∆ the functional F † on Rn to be the transpose of F ;

i.e. 〈F †, ei〉 = 1 if i ∈ F and zero otherwise. Then the functional ϕε := 1† + ε
∑n−p

j=1 F
†
j attains its

minimum (in Pt) on G′ for all 0 < ε << 1. But for ε >> 0 we have 〈ϕε, t(n+1)ei〉 < 〈ϕε, G′〉 whenever

i 6∈ Fn−p. Thus we can choose the unique ε that makes 〈ϕε, t(n+1)ei〉 = 〈ϕε, G′〉 for all i 6∈ Fn−p, so

that ϕε attains its minimum on G.

It is easy to check that the labels on the faces of X are distinct, whence FX is the minimal

resolution of I + m(n+1)1 by [4], Remark 1.4. In particular, the irredundant irreducible components

of I are in bijection with the facets of X by Theorem 5.12, and the generators of the forest ideal

I∨ are given by x(n+1)1−aG for facets G ∈ X. This recovers the generators for I∨ in Example 1.9.

Retaining earlier notation, the face G has dimension 1 + dim(G′). Thus the p-faces of X are in

bijection with the collection of p- and (p−1)-faces of the permutahedron. In fact, the (unlabelled)
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I X = hull(I + m(4,4,4)) X∨ = cohull(I∨)

Figure 6: I and I∨ are the permutahedron and forest ideals when n = 3. The complex X is the
(labelled) regular polytopal subdivision of the simplex promised by Proposition 5.16. Overlayed on
this figure is the dual complex X∨ (without its labelling). At right, X∨ is shown with its labelling,
which is Zn-shifted as per Theorem 5.8. Turn the picture over for the staircase of I∨.

pair (|X|, |∂X|) has the same faces as the pair
(
∂(v ∗ Y ), v

)
consisting of the boundary of the cone

over the permutahedron Y rel the apex of the cone. The cellular complex X∨ supporting the cohull

resolution of the forest ideal I∨ is therefore easy to describe. Let Y be the permutahedron in Rn

and Y ∨ its polar. Then X∨ is the cone over ∂Y ∨ from the barycenter of Y ∨. The vertices G∨ of

X∨, which are labelled by the generators of I∨, almost all correspond to the facets G′ of Y (whose

labellings are as above). Only the apex of the cone is an exception, corresponding instead to the

interior of Y . The case n = 3 is depicted in Figure 6; it should be noted that the equality Y = Y ∨

is only because Y is 2-dimensional, not some more general self-duality.

Now cohull(I∨) is a cellular resolution of I∨ = I∨ + maI+1, so we can dualize this cellular

resolution using Theorem 5.8 again. This yields a minimal relative cocellular resolution of I, which

is seen to be cellular and (coincidentally?) equal to hull(I). 2

Recall from Section 1 that an ideal is cogeneric if it is Alexander dual to a generic ideal. The

minimal resolution of such an ideal was introduced in [15], where it was dubbed the co-Scarf

resolution. The next theorem, along with the proof of Theorem 5.19 above, explains why the

construction in [15] involved a subcomplex of the boundary of the simple polytope dual to the

simplicial polytope of which the Scarf complex is a subcomplex. The theorem is a direct consequence

of Theorem 5.8, Example 5.14, and Proposition 5.20.

Theorem 5.23 Any cohull resolution of a cogeneric monomial ideal is minimal and cellular. 2

Remark 5.24 That the co-Scarf resolution is cellular as opposed to weakly cellular was assumed

in [4], Example 1.8 but overlooked in [15].
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Example 5.25 It is possible for the hull and cohull resolutions to coincide for a given ideal I. For

instance, this occurs if I = m; or if I is simultaneously generic and cogeneric (which turns out to

be pretty hard to accomplish!); or if I is the permutahedron ideal in 3 variables. Conjecturally, the

hull and cohull resolutions should coincide for permutahedron ideals of all dimensions. 2

Example 5.26 Of course, it is also possible for the hull and cohull resolutions to be very different.

For instance, the cohull resolution of the ideal I∨ from Examples 1.8 and 5.10 is the co-Scarf

resolution, which is cellular and supported on an octagon with only one maximal face (dualize the

picture in Figure 5). On the other hand, hull(I∨) is a triangulation of the same octagon. 2

Example 5.27 The canonical cohull resolution can differ from a noncanonical cohull resolution.

For instance, let I = 〈x3z, xyz, y3z, x3y3〉 and a = (3, 4, 1), so Ia = 〈xz, x3y2, xy4, y2z〉 and I∨ =

〈xz, x3y, xy3, yz〉. Since hull(I) is not minimal, we look elsewhere for the minimal resolution of

I. But hull(Ia + ma+1) is not minimal, and the failure of minimality occurs in such a way that

cohulla(I) is also not minimal. On the other hand, the offending nonminimal edge is not present in

hull(I∨+ maI+1), and this resolution is minimal. It follows that cohull(I) is minimal. Note how the

passage from Ia to (Ia)∨∨ = I∨ “tightens” the hull resolution of Ia to make the nonminimal edge

disappear in hull((Ia)∨∨), cf. the remark after Corollary 2.14.

The labelled complexes supporting these resolutions are all depicted in Figure 7, where the

resolutions with black vertices are drawn “upside down” to make their superimposition on the

staircase diagram for I easier to visualize. Observe that a staircase diagram for I can be obtained

by turning over the staircase diagram for either Ia or I∨, although these result in different “bounding

boxes” for I. Note that all of the complexes, particularly the cohull complexes, are labelled and

not just weakly labelled. 2

Example 5.28 Finally, an example to illustrate that not all cellular resolutions come directly from

hull and cohull resolutions, so that the algebraic techniques to prove exactness in Section 6 prove a

stronger duality for resolutions than a geometric treatment such as that in [4] or [15] could provide.

All of the labelled cellular complexes from this example are depicted in Figure 8.

Let I = 〈z2, x3z, x4, y3, y2z, xyz〉, so that I∨ = 〈xyz2, x2y3z, x4y2z〉. Then hull(I) and cohull(I)

are not minimal (the offending cells have italic labels); moreover, cohulla(I) = cohull(I) for all

a � aI = (4, 3, 2). Nonetheless, the minimal resolution FX of I∨+m(5,4,3) is cellular, so Theorem 5.8

applies, yielding a minimal relative cocellular resolution F (X,XU )[−(5, 4, 3)](−2) for I. In fact, this

relative cocellular resolution is cellular, supported on the labelled cell complex Y . 2

6 Deformations and limits of resolutions

The final item on the agenda is the proof of Theorem 5.8. To that end, the goal of this section is

Theorem 6.11, which is actually a little more general than Theorem 5.8. It can be viewed as the
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result of applying a limiting process to a collection of pairs of linked artinian monomial ideals that

are deformations of a given pair. The entire section is a setup to apply a limit to Proposition 3.11,

and is another manifestation of the kinship of Alexander duality and other types of duality for

Gorenstein rings. The maps fb in the following definition accomplish the deformations.

Definition 6.1 Define the map fb: Zn → Zn for b � 0 by the coordinatewise formula

fb(c)i =

{
ci − bi if ci ≤ 0
ci if ci ≥ 1

To avoid messy exponents we also let fb(xc) = xfb(c). Whenever the symbol fb is written, it will be

assumed that b � 0.

Proposition 6.2 If I ⊆ S is any monomial ideal then 〈fb(I)〉 = S[b] ∩ Ĩ.

Proof: It is clear from the definition that fb(c) � −b if c � 0, whence 〈fb(I)〉 ⊆ S[b]. Since

also fb(c)+ = fb(c+), we conclude that 〈fb(I)〉 ⊆ Ĩ as well. For the reverse inclusion, assume

xc ∈ S[b] ∩ Ĩ. Then fb(xc+
) ∈ fb(I) and divides xc because fb(c+) � c whenever c � −b, a fact

which is easily seen from the definition. 2

Recall from Section 5 that the join of c, c′ ∈ Zn is the componentwise maximum.

Lemma 6.3 The map fb preserves joins; that is, fb(c ∨ c′) = fb(c) ∨ fb(c′). 2

This lemma is important because of the next proposition, originally due to D. Bayer. Let X be

a labelled cell complex, and suppose f : Zn → Zn is a map respecting joins. Denote by f(X) the

labelled cell complex which is obtained by applying f to the labels on the faces of X. Thus G ∈ f(X)

is labelled by f(aG) whenever G ∈ X is labelled by aG.

Proposition 6.4 Let FX be a cellular resolution of a finitely generated module M ⊆ T . If f : Zn →
Zn preserves joins then Ff(X) is a resolution of 〈f(M)〉.

Proof: Note that because f respects joins the effect of f is determined by its effect on the vertex

labels. Similarly, 〈f(M)〉 = 〈f(xb) | b is a vertex label of X〉. Thus one only needs to check that

Ff(X) is acyclic. It suffices to check that XB(b) is acyclic for all b ∈ Zn, by the acyclicity criterion

of [4], Proposition 1.2.

Suppose, then, that α is a cycle of the reduced chain complex of |f(X)B(b)|. Then α also

represents a cycle of |X|. Let c be the join of the labels on the faces in the support of α, considered

as faces of X. Since f preserves joins, f(c) � b and |XB(c)| ⊆ |f(X)B(b)|. Now α is a boundary

in the reduced chain complex of |XB(c)| by [4], Proposition 1.2, and it follows that α is also a

boundary in the reduced chain complex of |XB(b)|, completing the proof. 2
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Corollary 6.5 If FX is a cellular resolution of I then Ffb(X) is a cellular resolution of S[b]∩ Ĩ. 2

Keeping the notation of the corollary we can augment Ffb(X) to a resolution of S[b]/S[b] ∩ Ĩ,

homologically shifted down 1, by adding a summand S[b] in homological degree −1. We denote this

augmented resolution by Fb(X), and we let Fb(X) := Fb(X)∗, with differential δb. The generator

of the summand S[−fb(aF )] ⊆ Fb(X) corresponding to the face F will be denoted by Fb, while the

generator of S[fb(aF )] = S[−fb(aF )]∗ ⊆ Fb(X) will be denoted by Fb. Keep in mind that Fb is

in Zn-graded degree −fb(aF ).

We will soon be defining maps between the Fb(X) for various b, and the following lemma,

particularly part (ii), will be the tool used to prove that these maps are well-defined, commute with

the differentials, and form an inverse system.

Lemma 6.6 If b � b′ � 0 then

(i) fb = fb−b′ ◦ fb′ ,
(ii) fb′(c)− fb(c) = c− fb−b′(c) .

Proof: Plug and chug, using the equality fb(c)+ = c+ for (i). 2

Lemma 6.7 For every b � b′ � 0 we have an injection of chain complexes ϕb,b′ : Fb(X) ↪→ Fb′(X)

sending Fb to
mF

fb−b′(mF )
Fb′.

Proof: There are two aspects to the proof: (i) the given map is an injection of homologically graded

modules which (as a map of Zn-graded modules) has degree 0, and (ii) the injections commute with

the differentials. The first follows from the equality −fb(aF ) = −fb′(aF ) + aF − fb−b′(aF ) which

is easily seen to be equivalent to Lemma 6.6(ii) when c = aF . The second is a longer calculation

directly from the definition of the differentials δb and δb′ of the chain complexes Fb and Fb′ .

The definitions imply that δb is just the transpose of the differential from the cellular free complex

as defined in [4]. Thus, δb(Fb) =
∑

G∈X ε(G,F )fb(mG)
fb(mF )

Gb, where ε is the incidence function defining

the differential of X. Note that ε(G,F ) is nonzero only if G ⊇ F . We have

δb′ ◦ ϕb,b′(F
b) =

∑
G∈X

ε(G,F )
fb′(mG)

fb′(mF )
· mF

fb−b′(mF )
Gb′

=
∑
G∈X

ε(G,F )
mG

fb−b′(mG)
· fb(mG)

fb(mF )
Gb′

= ϕb,b′ ◦ δb(Fb),

where the transition from the first line to the second is accomplished by two applications of

Lemma 6.6(ii). 2
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Lemma 6.8 If b � b′ � b′′ � 0 then ϕb,b′′ = ϕb′,b′′ ◦ϕb,b′ .

Proof: We need only check the equality as maps of modules. The proof again uses property (ii)

from Lemma 6.6, and it involves manipulations similar to those in the proof of Lemma 6.7. 2

These lemmata show that we have an inverse system of complexes of free modules, so it is

natural now to take the inverse limit. With F t(X) := F t·1(X) we can simplify a little since the

inverse systems {Fb(X)}b�0 and {F t(X)}t∈N are cofinal, so that their limits are the same. We take

this opportunity to note that our inverse limits, when taken in the category of Zn-graded objects

and degree zero maps, will be denoted by ∗lim
←−

, and that S is complete in this category. Recall

that, for our inverse system {F t(X)}t∈N of chain complexes, for instance, this is defined as

∗lim
←−
t

F t(X) =
⊕
c∈Zn

lim
←−
t

F t(X)c ,

where the inverse limits on the right are in the category of chain complexes of k-vector spaces.

At each stage in the inverse system, fb moves the labels on XU away from the first orthant,

in negative directions, turning any zeros into arbitrarily large negative integers (hence the name

“negatively unbounded” for the subcomplex XU of X). Then S-duality makes the negative integers

positive. Thus the maps fb, combined as they are with S-duality in the definition of Fb, create

irreducible components of Ia from those generators of I which do not have full support by pushing

the zeros out to (positive) infinity. In the limit, the vertices defining those generators disappear.

This provides the intuition for the next result.

Theorem 6.9 F (X,XU ) = ∗lim
←− t F t(X).

Proof: The first observations are that F (X,XU ) is a subcomplex of F t for all t, and that the maps

ϕt , t′ := ϕt·1 , t′·1 defining the inverse system restrict to the identity on F (X,XU ). This is because of

the way ft := ft·1 is defined:

ft−t ′(mF ) = mF ⇐⇒ t = t ′ or F 6∈ XU(5)

because fb(c)i = ci for all i precisely when c � 1. Thus we have, for all t ≥ 0, exact sequences

0 → F (X,XU ) → F t(X) → F t(XU) → 0(6)

giving rise to a corresponding exact sequence of inverse systems. To be more precise, the maps

{ϕt , t ′} from the inverse system {F t(X)}t∈N induce maps {ψt , t ′ : F t(XU) → F t ′(XU)}t≥t ′ which

make {F t(XU)}t∈N into an inverse system.

It is readily seen that the maps ψt , t ′ are injections, so that ∗lim
←− t F t(XU) =

⋂
t
ψt , 0

(
F t(XU)

)
.

Furthermore, statement (5) implies that ψt , t ′
(
F t(XU)

)
⊆ mF t ′(XU) if t > t ′. It follows from the
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Krull intersection theorem that the inverse limit is zero. Since the inverse limit is always left exact

our exact sequence of inverse systems arising from (6) yields the desired isomorphism. 2

So we can write F (X,XU ) as an inverse limit. What have we gained? In the category of Zn-

graded objects in which each graded piece has finite dimension over k (e.g. if the objects are chain

complexes which are finitely generated as S-modules), the functor ∗lim
←−

is exact, at least in the

case where the inverse systems are indexed by N—see [18], Exercise 3.5.2. With this in mind the

following corollary is a simple consequence of [18], Theorem 3.5.8.

Corollary 6.10 To compute homology we have Hi(F (X,XU )) = ∗lim
←− tHi(F t(X)). 2

Until this point in this section, the labelled cell complex X has been arbitrary. Now, however,

we suppose that X supports a cellular free resolution of the ideal I + ma+1, with a � aI . We will

see shortly that for any t the only nonvanishing homology of F t(X) is in homological degree 1− n,

so the previous corollary implies that the same holds for F (X,XU ). Now FX has length at least n− 1

(i.e. dimX ≥ n − 1) because it gives a free resolution of an artinian ideal; if we are so lucky that

FX has length exactly n− 1, then the summand of F (X,XU ) in homological degree 1− n will be the

last nonzero term. In other words, F (X,XU ) will be a free resolution of some S-module. This is what

makes Theorem 5.8 a special case of the next result. Even if we aren’t so lucky with the length of

FX , at least it will be split exact in homological degrees > n − 1 (so that F (X,XU ) is split exact in

homological degrees < 1− n), and we can still determine what the nonzero homology module is:

Theorem 6.11 Under the above conditions, Hi(F (X,XU )) = 0 if i 6= 1 − n, and H1−n(F (X,XU )) =

I [a][a + 1].

Proof: Let J = I+ma+1. For any b � 0 Corollary 6.5 implies that Fb(X) is a free resolution of the

module S[b]/ S[b]∩J̃ , homologically shifted down by 1. Thus Fb(X), which is the S-dual of Fb(X),

is a complex whose homology in degree i− 1 is Ext iS

(
S[b]/ S[b]∩J̃ , S

)
. Now S[b]/ S[b]∩J̃ ⊆ T/J̃

is artinian since J = I + ma+1 is, and it is noetherian because S[b] is. Hence the Ext module in

question is, by [5], Theorem 3.3.10(c), nonzero only for i = n. Moreover, Proposition 3.11 produces

the equality

ExtnS

(
S[b]/ S[b]∩J̃ , S

)
=
(
I / I∩ma+b+1

)
[a + 1].

Taking the ∗lim
←− b of this last line and applying Corollary 6.10 along with the completeness of S

proves the theorem. 2
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On Rejection 
...for centuries of an elegant geometric language 

Gary Harper 
 

My paper, Meaning-Imposers versus Meaning-Derivers, was first rejected by the esteemed 
American Journal of Physics in January, 2008. “Read our editorial policy” the editor wrote, “our 
readers are not interested in a new interpretation of Geometric Algebra.” (Quoting from memory, 
since I had rejected his rejection letter.) New interpretation, sir?!—the whole point of the paper 
was to avoid imposing an interpretation, thereby deriving “the keystone of the entire structure of 
mathematics” to echo the hero of the paper. 

The editor had the grace to say that he considered himself an associate member of my “orga-
nization” (his quotes, referring to my Institute for Nagging Doubt organization, unquoted, no less 
serious than the Rejecta Mathematica organization, unquoted.) I happen to admire this particular 
editor, enough not to embarrass him by name, and would be proud to have him as a full member, 
if he would actually read my paper. (Okay, he had a point:  it contained mostly mathematics, not 
physics, even tho it did have torque in it, and linear force, angular velocity, not to mention bal-
ance point.)  

The second rejection occurred in February from the august American Mathematical Monthly. 
This time my paper received a good editorial review, as I know from the kind rejection letter and 
from concurrent hits on my website where the ideas are leisurely developed. “I have reviewed 
your submission in detail with our editorial board” the rejector wrote, “and we have reluctantly 
concluded that it does not have broad appeal to our diverse audience. We have only a limited 
amount of space available each month, and are forced by the enormous volume of submission to 
reject many fine papers.” (Quoting from memory.) 

Where did I go wrong? Perhaps I should not have called professional mathematicians, in the 
first paragraph, “meaning-imposers” who generate “inconsistencies and confusions”. Perhaps I 
should not have asked “Where did I go wrong?” on page 61; or, “Have I made another blunder?” 
on page 62. Perhaps I should not have given equal time to the blunders of my Geometric Algebra 
heroes, especially the living ones; or should not have written, “points have not yet become full-
fledged geometric objects, like scalars!” on page 68. Maybe I used too many exclamation marks. 

Please tell me, sirs, what to change because this paper is dead serious. It is an attempt to in-
troduce the reader to the very expressive geometric language that germinated in the fertile young 
mind of Hermann Gunther Grassmann in the early 1800s. Altho we have recently understood a 
good half of his language, the other half, which is just as good—or perhaps better since it is the 
foundation—remains unknown because it seems strange. But it really isn’t, what really is strange 
is the perverse historical trajectory that makes it seem strange. 

Just by reading this paper you have no hope of becoming articulate with Grassmann’s full 
language. For that you will of course have to also read his two books and play with the ideas. 
And good luck with that—it took me a good ten years to really understand his fundamentals, and 
then another good ten years to make them cohere in my mind. So, if this paper succeeds in its 
purpose, you will have twenty good years in front of you. 
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Meaning-Imposers versus Meaning-Derivers 
 

Gary Harper 
 
The Geometric Algebra community has evolved into a large segment of meaning-imposers 

and a tiny segment of meaning-derivers. Meaning-imposers begin with an abstract mathematical 
formalism, viewed as a gift from heaven regardless of how it had actually been achieved histori-
cally; and then impose on it whatever geometric meaning seems convenient or appropriate. Such 
meaning, as many readers know, is called an interpretation informally, or a model formally. 
Meaning-derivers, as few readers may know, begin with geometric meaning, viewed as the 
primitive starting point, and then derive everything else from that, including the mathematical 
formalism itself. 

Meaning imposition has been undeniably fruitful, but it generates subtle inconsistencies and 
confusions that have stalled us in the purely free Geometric Algebra. Hence we cannot articulate 
bound things, like points for example, except by imposing clever but clumsy artifices on the free 
language from outside it. Nearly two centuries ago Hermann Grassmann showed how to articu-
late bound things from inside the language,1 but he suffered from the distinct inconsistencies and 
confusions of a creator who has not had time to polish his creation. By starting over and carefully 
re-deriving his full language from seminal geometric concepts, we can dispel the fog and gain a 
more expressive language. 

Here are the seminal ideas:  (1) the concept of geometric points, (2) what it means to summa-
rize points, and (3) what it means to extend something from a point, to wit:  (1*) Points have 
fixed distances among themselves. (2*) Summarizing points is like summarizing anything:  order 
doesn’t matter; grouping doesn’t matter; a point summarized with Nothing is just the point itself. 
Finally, Grassmann’s gem, somewhat polished: (3*) extending something from a point sweeps it 
from there directly back to its original position, filling in as it returns, which increments dimen-
sion. Hence, to begin at the beginning, extending a point from another point produces a directed 
line segment that has a dimension one higher than that of a point. 

(So, clearly, Grassmann was the founding meaning-deriver; but he fell under the seductive 
spell of mathematical abstraction, and became a resolute meaning-remover. Since geometric 
meaning had already generated his symbolism, Grassmann never could have become a bona fide 
meaning-imposer. Such persons arrived later, after Grassmann’s resolutely abstract symbolism 
had been cleaned up and unified by William Kingdon Clifford.2) 

At this juncture, meaning-imposers will ask what the three primitive concepts are, if not pre-
liminary meaning imposition. Point well taken—we meaning-derivers are closet meaning-
imposers; but we are timid ones who impose meaning only at the very beginning, before any 
symbolism has been established, and not just when it seems convenient or appropriate. If mean-
ing ever comes to seem overwhelmingly convenient or appropriate, we go right back to the closet 
and start all over again, convinced that we, in our naivety, have neglected something important 
that will change the symbolism. 
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Well then, a meaning-imposer may say, I, the meaning-deriver, will shortly need to return to 
the closet if I expect to have free vectors in my language. There is just no way that roving di-
rected line segments can ever be derived from fixed points!—the roving idea has to be imposed. 
Again, point well taken—it does seem implausible that securely bound things, unassisted, could 
ever produce something free. But let us just see if it might be true. 

The primitive idea of point summary immediately generates some symbolism; and it looks 
exactly like the rules for elementary-school addition, applied unfamiliarly to points, with zero 
taking the role of Nothing. But it also looks like the rules for logical or, again applied unfamil-
iarly to points, with false taking the role of Nothing. So, which will it be? 

One can’t be sure immediately because, as mentioned, point summary is still unfamiliar, even 
these several centuries after Grassmann (and Mobius) introduced it. Indeed, it is commonly un-
derstood to be, for example, “non-geometric”; and it “makes no intrinsic sense”.3 Here is where 
an eager young meaning-deriver will probably have to return to the closet and start all over again 
because she, in her naivety, will decide that summarizing two points, a and b say, produces the 
midpoint, m, between them. What could be more natural?—this immediately establishes sum-
mary indifference to order, the commutative law. But it also implies that summarizing point a, 
say, with itself simply reproduces point a. This is clearly a kind of geometric logic, devoid of 
numbers; not arithmetic, wallowing in numbers. 

With that satisfying thought, the young meaning-deriver begins to investigate how this relates 
to the primitive idea of fixed points. Whoa! That idea applied to the midpoint idea would invali-
date summary indifference to grouping,4 the associative law. Back to the closet: midpoint m 
summarizes two points, so it should have twice the significance of either one of them alone. So 
this is not geometric logic, it is geometric addition, and the symbolism now becomes a + b = 2m 
and a + a = 2a, rather than naked a, as before. This new symbolism now provides enough infor-
mation to validate the associative law, and all the other laws of summary. (Terminology:  m is a 
location; 2 is its weight, which is a kind of magnitude like length, area, and volume. The weight 
of a sum point is the sum of its summand weights. A naked location like a is called a simple 
point, or a unit point since a = 1a.) 

To summarize, points must be weighted for the first two primitive concepts to be validated to-
gether—points must wallow in numbers. This is your very first derived meaning; and it may ap-
pear insignificant until you consider that it seems manifestly contrary to hoary Euclidean con-
vention, which denies points “magnitude”.5 In retrospect, it is clear that this ancient convention 
must be misleading, at best:  distances among points is all about numbers simply because dis-
tance is an ordered continuum; and summary of points should somehow cause points to inherit 
that continuum. 

Your second derived meaning may not seem so insignificant:  a sum point always lies on the 
line thru its two summands. This arises directly from previous equation a + b = 2m, where m is 
still the midpoint (to keep the commutative law valid); hence it necessarily lies on the line thru a 
and b, tho it now has a weight of 2. You can use this equation to approximate any sum of two 
weighted points as closely as you wish by adjusting weights to express midpoints of midpoints, 
iterated; and such an approximation becomes exact in the limit. Midpoints of midpoints necessar-
ily generate a result lying on the line thru the two summands. 
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What other derived concepts do the first two primitive concepts mandate? When you play 
with these concepts as Grassmann did,6 you soon discover that they require a sum of two 
weighted points, aa + bb say (having scalar weights a and b), to obey this simple rule: 

weight–distance(a) = weight–distance(b) 
This means that the weight of a times its distance to the sum point equals the weight of b 

times its distance to the sum point. This is your third derived meaning, and it is quite significant 
because it tells exactly how summary of points causes them to inherit the distance continuum. 
The rule is just as valid for negative weights as for positive ones provided you carefully distin-
guish signs as follows:  give a summand-to-sum distance that crosses the other summand the op-
posite sign to a distance that doesn’t. 

The weight–distance rule induces the following intuitive concept of point summary:  a sum 
point is physically a balance point so it always lies nearer the heavier summand (the one with 
greatest absolute value). When this idea is applied to a sum of points having opposite signs, the 
opposite-sign distinction kicks in, requiring the sum point to lie on the line from the lighter point 
(in absolute value) thru and beyond the heavier point. Which prepares you for... 

Some magic:  what is a – b? 
Whatever the location of this sum, call it l, its weight, 1 – 1, is 0; so this sum has this form: 0l. 

Since anything multiplied by zero is just zero, the sum a – b is clearly zero. Right? 
There is a quick way to test this:  give the entire sum a non-presupposing name, “v” say, 

meaning that v = a – b (“l” was presupposing since it was a location).  Now see if indifferent v 
acts like zero:  Add v to the second nearest thing in sight, namely point b. When you apply the 
primitive rules of point summary, you get point a. Hmmm... Okay then, subtract v from the 
nearest thing in sight, point a. You get point b. 

That is not how zero acts!—zero doesn’t change things when it is added or subtracted with 
them. This v thing is changing points under addition and subtraction; in fact it is moving them 
around. Where did I go wrong reasoning that a – b must be zero? I went wrong in assuming 
there was some location, “l” I called it, for its zero weight to multiply. There’s not. The point 
sum a – b really has no location. It really has no weight. And yet it is not zero. It is truly bizarre 
to the modern mind, which has come to shun point summary, altho many minds born in the 
1800s were comfortable with it. Let’s reacquaint ourselves with their old friend: 

You can sneak up on a – b by approximating it with non-zero weights that approach zero. For 
example, start by giving a a weight of 1/2, and then successively halve a’s actual-minus-
approximate weight like this: 1/2, 3/4, 7/8, 15/16, etc. This will successively halve the approxi-
mate sum weight. At each weight halving, the weight–distance rule will scoot the approximate 
sum location twice as far away along the line thru a and b. 

This removes some of the mystery:  as the sum point weight goes to zero, its location goes to 
infinity, in lock-step; so the diminishing weight and the receding location effectively cancel each 
other. Which is why a – b is not zero:  it is actually a peculiar kind of zero times infinity. The sat-
isfying conclusion is that a – b is a point at infinity. Right? 

This is certainly a modern concept, quite familiar from Projective Geometry, which is redo-
lent with classically imposed points at infinity. But I just said that the result of a – b really has no 
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location. How can it not have a location if it resides at infinity? Have I made another blunder? Or 
is this just an innocuous problem with our language? 

There is an easy way to test this:  start a with a weight of 1 1/2 (rather than 1/2) and then 
sneak up on a – b, as before. As before, halving the approximate sum weight scoots the approxi-
mate sum location twice as far away. But it does so in the opposite direction. This is again man-
dated by the weight–distance rule, which carefully notices, during the approximation, which 
summand is lighter, and which is heavier. In consequence, since both approximations approach a 
– b in the limit, it appears that this sum is infinitely distant from itself! 

However, if this sum really has no location, then the problem disappears because such a sum 
cannot be any distance from anything, let alone from itself. But if it “resides at infinity” then 
there is a problem with our language, and it definitely is not innocuous. It generates the subtle 
confusion that Geometric Algebra directly articulates “points at infinity”. The full Geometric Al-
gebra does not. It cannot. It can articulate only finite representations. Moreover, such a finite 
representation cannot be a single non-decomposable thing—it is intrinsically composite. (Fore-
shadowing query: Indifferent v therefore cannot be a sum, as naively assumed, so what is it?) To 
peek ahead, there is no “at” at infinity; rather there are “ats” at finity.  

You have just seen that v, under addition and subtraction, can move the two points that com-
pose it, a and b. Look closely:  from elementary-school rules of addition, v + b = (a – b) + b = a 
+ (b – b) = a + 0 = a. So point b has effectively been carried from one end of v to the other end. 
And the reason is clear:  under addition, b annihilates one of v’s endpoints, poof, leaving the 
other endpoint as residue.  It seems natural to call the poofing endpoint the tail, the residual end-
point the head; and say that v + b carries point b from v’s tail to v’s head. Altho this nomencla-
ture seems natural, One wonders how generally useful it might be since this obviously works 
only because v is being added with a copy of its own endpoint. Right?—v doesn’t carry other 
points around under addition, does it? 

Well, let’s just see: given an arbitrary point r, what is v + r? To ask this question in the fresh 
young symbolism, solve this equation:  v + r = x, where x is unknown, utterly unknown as indi-
cated by its generic font. 

What is going to happen next is so important to your understanding of the full Geometric Al-
gebra that I am going to present it in complete detail, with powerful emphasis on the crucial part. 
If you hope to acquire a more expressive geometric language then you will have to wrestle with 
this until you understand it completely. How will you know whether you’ve understood it? If my 
experience is any indication, you will become amazed. If you don’t, then you may be suffering 
from traditional meaning-imposing habits. To help overcome that, remember that we are articu-
lating fixed points, and nothing else. We began bound; we are bound now; and it looks like we 
will stay bound because we are too timid to cavalierly impose any kind of geometric freedom. If 
freedom arises, it will be entirely derived from things that are entirely bound. Who would ever 
bet on that?  

Okay, expand equation v + r = x, giving a – b + r = x. Now pull the purely-positive-equation 
trick by putting b on x’s side of the equation: a + r = b + x. The left side has the sum of two sim-
ple points. The right side has the sum of a simple point and something, namely x. For the right 
side to equal the left side, this something must also be a simple point (do the weight calculation), 
so denote it in point font, x. Hence, utterly unknown x has become somewhat known simple 
point x. So, apparently v really does move arbitrary points around since that question will be an-
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swered by x’s eventual location. To find this location, we need to visualize the transformed equa-
tion: a + r = b + x. 

This equation involves addition, equality and simple points. These are the elements that have 
to be displayed geometrically. Addition of two points can be indicated by a dashed line connect-
ing them. The equals sign is too imprecise about location to be useful on a geometric figure. In-
stead, a skinny curved line with tiny arrows on each end will be used. Call this the geometric 
equals sign. Its two tiny heads will just touch the things that are equal. Simple points are so use-
ful that they should be distinguished from generic weighted points; let’s use a little triangle for 
them and a little dot for generic points. 

With these conventions, the transformed equation becomes geometrically obvious:  two little 
triangles connected by a dashed line denote addition of two simple points, so their sum, 2m, lies 
at their midpoint. There are two of these additions connected by equality, so they share the same 
midpoint sum. Here is a picture: 

 
Visualizing simple point sums. 

This kind of figure has seminal importance so let’s dignify it as an X-diagram. It answers the 
question about v’s ability to move points other than the two it comprises:  x is the solution to the 
original equation v + r = x. In words, v added to r moves that over to x. Since the location of r is 
entirely arbitrary, v moves any simple point in a similar way. Here is how to be sure you under-
stand this completely: 

Sketch weighted points a and –b. Connect them with a dashed line to indicate that they are be-
ing added together. This makes a – b a kind of cohesive bundle (hint), deserving its own name, v; 
and deserving more intimate notation: a–b. Have a friend sketch a point r somewhere—
anywhere. Now add your little bundle to it like this:  Wham!—equate the summary result to x so 
you have a concrete result to work with. Bang!—unbundle v and swap –b to x’s side of the equa-
tion (by erasing the dashed-line addition and the minus sign). This gives two simple point sums 
that equal each other. Pow!—do the sum you immediately know, namely a + r. This gives mid-
point 2m, which is also the sum you didn’t immediately know, namely b + x. So now you know 
it too, and you therefore know where x is. (For graphical precision, you should, of course, sketch 
the dashed-line additions as you do each sum, thereby making them neatly Xd together right in 
the middle.) Next, have your assistant sketch a different point somewhere, anywhere, pow! An-
other: pow!... If you can do ten distinct v+r sums in a row, correctly, without batting an eye, then 
you understand this. Please understand this—it is really quite simple; but the main reason we 
still suffer from geometric inconsistencies and confusion is nearly universal chronic ignorance of 
its various unexpected consequences. 

Having understood this, you may think that it does not seem amazing. But it might seem sur-
prising, or at least peculiar:  Recall that v was able to move a copy of its own endpoint under ad-
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dition by poofing it (to speak technically), leaving the other endpoint as residue. But here v is 
moving an arbitrary point under addition by a kind of scissoring mechanism, the X-diagram, in 
which nothing is being poofed. And yet... 

And yet v is moving point r exactly as tho v could move parallel to itself to place its tail over 
r, and then do the addition; in which case v would be poofing, exactly as before. Dust off your 
high-school geometry and gaze at the X scissoring mechanism until you understand this in your 
bones. (You see the abm triangle, congruent to the rxm triangle, don’t you?—take it from there.) 
To help understand this, here is the previous figure, exactly as before, geometrically, with the 
exact same equation, except that it has been left untransformed: 

 
A direct visualization of  r + v = x. 

This figure may not seem as geometrically obvious as the X-diagram. Nevertheless, it directly 
represents the same equation, left untransformed. To understand that, superimpose the previous 
X-diagram on top of it—corresponding points will match exactly. The X-diagram should seem 
obvious if you understand how simple points add. When you understand how v acts, this figure 
should also seem obvious. Notice that the sum 2m has disappeared from it because this point was 
not present in the original equation—it served as an illuminating centered pivot point in the 
transformed equation that you may now discard as a conceptual crutch. Notice also that, altho 
simple points are still depicted with tiny triangles, a negative simple point has been depicted with 
a tiny square. This makes it easy to determine the head and tail of v, as you see. Speaking of v, 
let me say again, for emphasis:  in this figure it looks as tho v is able to move parallel to itself to 
engage the poof method of addition. If so, any puzzlement about the figure would evaporate. 

It turns out that v actually is able to move parallel to itself; and a different transformation of 
the original equation will directly display this. In this new equation, don’t unbundle v. Instead 
move r over to the x side of the equation: v = x – r. Kazaam!—the right side of this equation has 
exactly the same form as v does, namely a simple point minus another simple point. Here is the 
figure representing this re-transformed equation: 

 
geometric magic 
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To see that it communicates the same information, superimpose the X-diagram on top of it—
corresponding points will again match exactly.  In consequence, a–b equals x–r. Hence, because 
the location of r is completely arbitrary, v, in effect, is able to move anywhere parallel to itself. 
In short, geometric freedom has been entirely derived from things that are entirely bound. That, I 
submit, is amazing. Grassmann’s protracted account of discovery seems to indicate that he found 
it amazing too.7 

Apparently the strange un-point-like point v has a fixed separation and a fixed direction but 
no particular location. But exactly what has separation-and-direction? And exactly what has no 
location? Are these the same thing? No:  the summands of v, considered as a separated–directed 
whole, can reside anywhere because the sum itself resides nowhere. 

To be precise:  v is a peculiar addition of oppositely weighted points whose sum loses, in 
lock-step, both magnitude and location, which, in the limit, makes its summands gain both 
separation and direction. It’s magic—without magic, to borrow John Wheeler’s aphorism. This 
raises some... 

Perplexities 
• Roving v acts much like a conventional vector (so the name “v” was deviously presup-

posing), except that it is not a line segment. Right?... 
• I mean, addition of weighted points always produces another point, at least formally, 

doesn’t it?—addition never changes dimension, does it? (Everyone knows that a point is 
zero-dimensional, a line segment one-dimensional.) 

• Speaking of changing things, the previous magic changed focus in the limit from a sum 
to its summands. Is this distinction important formally? 

• For example, is this what makes v intrinsically composite? 
• Is that why the full Geometric Algebra always articulates things at finity? 
• If so, do the conventional rules of Geometric Algebra make the sum–summand distinc-

tion properly? 
• If not, should they? Could they? 
Some of these perplexities may be superfluous. After all, extending a point from another point 

produces a directed line segment, which would be exactly a conventional vector if it turns out to 
be as mobile, and as mobilizing, as v turned out to be; and that now seems likely, doesn’t it? But 
that would raise another perplexity:  what exactly, then, is the distinction between subtracting a 
point from another point, and extending that point from the other point? To find out requires 
specifying the... 

Relationship between extension and addition 
The relationship, like all healthy ones, is built on mutual respect:  (4a) Addition respects ex-

tension enough not to change the properties that extension hath wrought. (4b) Extension respects 
addition enough to treat addition’s result as a genuine summary of its arguments.  These new 
concepts require a trip back to the closet to start all over again. Fortunately they merely augment 
the first three concepts, so, once we understand how they change the symbolism, we can just pick 
up where we left off. 
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Addition does not change the properties that extension hath wrought. This is just an unfamil-
iar specialization of the concept of summary. One naturally expects a summary not to change 
any properties of what it summarizes; to do otherwise would make a mockery of the concept. 
Refusal to change properties is really more central to the idea of summary than indifference to 
order, or indifference to grouping; but it remains unfamiliar because of our present narrow expe-
rience with summary of homogeneous things, ordinary numbers. Extension generates inhomoge-
neous things, things having different dimensions; and that is the property that addition does not 
change. Which removes one perplexity:  (4a*) Addition does not change dimension. (This is a 
semantic formality that is surprisingly tricky to symbolize properly, as you shall see.) 

And that, in turn, begins to remove the perplexity about v being intrinsically composite. When 
addition is presented with summands having different dimensions, it can’t summarize them to 
anything simpler because it can’t give them a common dimension. Hence, it merely bundles 
them into a summary list, with the plus sign serving as conjoining punctuation. This bundle is 
intrinsically composite because (1) its contents cannot reduce to just one thing, and (2) it can al-
ways be decomposed and re-bundled differently, using addition’s associative law. 

It is obvious to any student of Geometric Algebra that a sum of things having different dimen-
sions is intrinsically composite:  these things are obviously too distinct to merge in summary. But 
it is almost always a surprise that sometimes—oftentimes—even things of the same dimension 
are that distinct. This surprise can be blamed on a historical mishap:  we have become stuck in 
the purely free Geometric Algebra. In that language, all readily imaginable things of the same 
dimension can always sum to a single thing simply because imaginable space just happens to be 
a perfect cage for free things. 

If you go just beyond imaginable space, however, you bump into free things of the same di-
mension that are too distinct to sum to a single thing. Free bivectors in free 4-space, for example, 
are that distinct if the planes thru them intersect in just one point. This possibility arises naturally 
from the extra dimension (and has obvious expression in the full language), but it seems so bi-
zarre to most students that they dismiss the idea of intrinsically composite same-dimensioned 
sums as too esoteric to worry about. Even Grassmann may have had that attitude during his early 
“geometry” phase,8 as he dismissively called it. 

If he did, he certainly revised his opinion after he encountered bound things late in his explo-
rations. Grassmann began his language like all students today begin it, purely free; and perhaps 
humankind’s roving spatial experience makes this approach natural. But his incredible curiosity 
and creativity eventually introduced him to bound points via free vectors!7 This is exactly back-
ward logically; and it is truly, astonishingly, extraordinary as witnessed by the fact that in nearly 
two centuries of ignorance about Grassmann’s bound language, no one else has made the trip 
backward and installed points within the formalities like Grassmann did. When he did that, he 
quickly discovered that there are readily imaginable same-dimensioned bound things that are too 
distinct to sum to a single thing.9 They are not esoteric at all—in fact they are more common than 
same-dimensioned things that can sum to a single thing. (To peek ahead, they aren’t simple 
points, are they?—they always sum to a single thing.) To really understand this, you need to 
know more about extension. 

And that requires notation. Extension had initially been denoted in about as many different 
ways as there were authors writing about it—Grassmann himself used several distinct nota-
tions—but it has recently stabilized on Cartan’s wedge, ∧, meaning extended to. Unfortunately, 
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that has two serious problems in the full Geometric Algebra, which must, above all, articulate 
points well since they are the generative elements: 

(1) a∧b would generate a directed line segment with tail at a, head at b; which is opposite to 
a–b, which generates separated–directed points with tail at b, head at a. This inconsistency 
would be confusing of course, but the worst of it is that these two expressions have an elegant 
relationship (coming up), fundamental to the full language, that would be obscured if they did 
not have their heads and tails in the same order. This really begs for extension to be from rather 
than to, which somewhat polishes Grassmann’s gem. Consistency with point subtraction 
prompted Hamilton to adopt a similar convention.10 

(2) From item 1, extension is clearly directed, so it really should have a directed symbol, 
rather than one with bilateral symmetry like ∧. How about ? This clearly indicates from, and its 
filled-in form indicates extension. Hence ab is “a extended from b”, like a–b is “a subtracted 
from b”; and these two expressions have their ducks aligned. As a bonus, this distinct notation 
should help clarify the transition from the conventional purely free language to Grassmann’s full 
language for those readers crossing that bridge.  

With notation established, we can pick up where we left off:  Extension respects addition 
enough to treat addition’s result as a genuine summary of its arguments.  Which is to say, ex-
tension with a point is indifferent to whether it operates on addition’s arguments, or on addition’s 
result. Here is how this augments the symbolism: 

(4b.1*)  (Ac) + (Bc) = (A + B)c      and  (cA) + (cB) = c(A + B) 
Notice that there are two rules, commuted, because extension is directed, so extending from c 

on the left is generally different from extending to c (reading backward) on the right. Mathemati-
cians call these rules distributive laws, which focuses on syntax. This may seem appropriate 
since these rules are part of the syntax, as explained shortly; but they, like all rules in this paper, 
were motivated by primitive semantics, so this paper will call them extension’s respect for sum-
mary to emphasize their meaningful origin. 

When you apply these rules multiple times to scalar-weighted points via a valid limiting 
process you get, for scalar c: 

(4b.2*) c(ab) = (ca)b = a(cb) 
This will be called extension’s respect for multiple summary, again focusing on geometric 

meaning (and it can also be generalized to generic A and B). To indicate that extension has both 
kinds of respect, let’s say that it has strong respect for summary. Strong respect for summary 
makes the language versatile and expressive by decoupling extension from addition, and from 
addition’s infinitesimal multiple limit, scalar multiplication. This prepares you to start... 

Extending things 
Here is where timid meaning derivation begins to really pay off. A meaning-deriver has to 

start with the primitive concept for extension, the third concept, which requires extension from a 
point to increment dimension. That, in turn, requires establishing the primitive dimension, the 
dimension of a point. 

Meaning-imposers long ago agreed that a point is zero-dimensional, but that poses a serious 
conundrum for meaning-derivers:  Since extension from a point increments dimension, shouldn’t 
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the dimension of a point therefore establish the dimensional increment that gives everything else 
a dimension? This is simply a natural requirement for the dimension of an extension result to be 
the sum of its argument dimensions. If so, then points must be one-dimensional. This would im-
ply that line segments are really two-dimensional; patches of plane are three-dimensional; and so 
on. This seems silly—we have known for millennia that lines are one-dimensional, planes are 
two-dimensional, and on up. Nevertheless, in a last-gasp nag, the meaning-deriver asks, what 
about on down? 

If points were one-dimensional, then scalars would be zero-dimensional. Suddenly it is the 
meaning-imposers who have a serious conundrum:  They have recently reached universal agree-
ment that scalars are indeed zero-dimensional. If points were zero-dimensional, as also agreed, 
then, by dimensional decrement scalars would have a dimension of minus one. (Unless points 
are scalars. Well, are they? If meaning-imposing habits incline you to think so, please ponder the 
elegant relationship (coming up) between points and scalars before deciding.) Here you have an 
example of the inconsistency that meaning imposition generates. Exposed like this, zero is not 
minus one, it doesn’t seem subtle, does it? 

Why haven’t we noticed this problem for the last several thousand years? First, only recently 
have scalars acquired a dimension, when they were belatedly recognized to be full-fledged geo-
metric objects like lines, planes and so on. When scalars interacted with geometric things, it was 
seen that they must have a dimension of zero because they do not change the dimension of what 
they multiply. Strangely, second, points have yet to be emancipated like that—points have not 
yet become full-fledged geometric objects, like scalars! Meaning-imposers have so far refused to 
allow points into the formalities alongside scalars, vectors, etc; except as outcasts, undesirables 
who are denied full geometric rights. It is tempting to blame this on Euclid, who refused to grant 
points “magnitude”, which effectively exiled them to the interpretation where, third, they have 
been neglected, orphaned from their geometric family, and underfed to the extent that they liter-
ally have no weight at all. Exile to the interpretation—let David Hilbert describe that: 

“One should always be able to say, instead of ‘points, lines, and planes’, ‘tables, chairs, and 
beer mugs’.”11 Well, lines long ago managed to escape from Hilbert’s beer hall by dressing up as 
vectors, able to participate in black-tie formalities. Planes have recently pulled off the same for-
mal getaway by dressing up as bivectors; but points are still stuck in the pub in their underwear. 
Since they are, who really cares what their dimension is? Apparently it is very much like the di-
mension of a table, or perhaps a beer mug?—who cares? Meaning-derivers care, and they want 
to get the orphan point out of the unruly interpretation and into the ruly formalities alongside its 
geometric kin: scalars, vectors, bivectors and so on. Transition into the formalities has been a 
paradigm for mathematical progress for thousands of years; but unexpectedly, for points it will 
require, gazook, meaning inside the language, formal semantics. 

Which, for distinction, requires formal syntax. Some of this syntax has already been pre-
sented:  it is just the collection of conventional rules for Geometric Algebra—the equations, like 
the commutative, associative and distributive laws, that serve as axioms. These equations estab-
lish the valid sentences in the language. 

All the rest is semantics, which traditionally—dogmatically—has resided almost entirely 
within the mind of the person composing the sentences. That turns out to be woefully inadequate 
for the full language, where bound points generate free things. The important formal distinction 
between bound and free requires formal semantics because the syntax intentionally ignores the 
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distinction, for good reason. Moreover, such semantics rest, in an unanticipated way, on formal 
dimension, which, because it cannot be defined by equations, is also part of the semantics. 

Formal dimension presents a rare opportunity to please everyone. To distinguish it from the 
previous decidedly informal dimension, give it a distinguished name:  extent, which means num-
ber of points required in an extension. This will please the meaning-imposer since a line segment 
obviously requires two points, so it has extent two; a patch of plane requires three points, so it 
has extent three; and on up. Certainly, a meaning-deriver is pleased because this gets the founda-
tional dimensions right:  a point requires one point in the trivial do-nothing extension, so it has 
extent one; a scalar requires (dare I say) zero points, so it has extent zero. The meaning-imposer 
might be doubly pleased to discover that formal extent, in its intrinsically separated form, auto-
matically articulates conventional dimension. Hence, conventional geometric dimension is not 
wrong, it is just a special kind of dimension. 

To be specific, addition in the full language makes a distinction it could not have made with 
points absent, namely the distinction between the separated extent of free things, and the filled-in 
extent of bound things. This distinction is definitely part of the semantics because the syntax—
the conventional rules of Geometric Algebra—simply cannot make it. To begin understanding 
that, investigate filled-in extent from the beginning: 

Extending a point from another point produces a directed line segment that has a dimension 
one higher than that of a point. Start formalizing this by expressing it in the young symbolism:  
ab. 

Now proceed to formalize dimension by making extent an operator that accepts an argument, 
so that, for example, extent(a) produces {1} since a is a simple point. Curly braces indicate a 
list of extents, necessary because extent()’s argument might be intrinsically composite. For ex-
ample, extent(b + a + ab) produces {0, 1, 2} if simple point a has a different location than b. 
(If these points had the same location, the extension would produce Nothing with extent {2} (a 
line segment with no length); in which case extent(b + a + ab) would have been {0, 1}. Such 
potential disappearance is just one of the reasons extent() is semantic—discovering disappear-
ance requires computation.) 

So, extension from a point increments extent, as required; and what does addition of two 
points do?—what, for example, is extent(a + b)? You already know:  since a + b generates a 
single thing, and since addition does not change dimension, this extent must be {1}. Which 
brings up a subtle but very important point:  because a + b generates a point with a weight of 2, 
the extent() operator clearly ignores weight; so, in general, for any generic weighted point xx, 
extent(xx) produces {1}. 

In consequence, weight is not Euclidian “magnitude”. When Euclid asserted that a point “has 
no magnitude” he meant that it has no spatial extent like a line does, like a plane does, like a vol-
ume does... Euclid was asserting, in the technical language of the full Geometric Algebra, that a 
point has no extent greater than one. This is true:  it has precisely extent {1}, and this has noth-
ing whatsoever to do with the point’s weight, which specifies its potential scaling relations with 
its geometric kinfolk. These distinct concepts have been confused for millennia because there 
was no terminology that clearly distinguished them. The full Geometric Algebra remedies that by 
quantifying Euclidian “magnitude” with extent, and scaling relations with weight, length, area, 
volume... (Each of which is a formal kind of magnitude, un-scare-quoted—see how deviously 
confusing the vernacular is?) 
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Now for the conventional-vector question:  how does directed line segment ab move 
around? Meaning-imposers long ago asserted that directed line segments are free to move any-
where parallel to themselves; and that seems to have been wildly successful. Nevertheless, a 
meaning-deriver is not that bold; in fact he is so timid that he won’t let ab move at all, unless 
the primitive semantics allow it. Fortunately, the primitive semantics have already generated 
things that can move points around; so the meaning-deriver can try moving the endpoints of ab 
to see what happens, like this: 

Generate a roving separated–directed pair of points, add it to both a and b, and then extend 
them, thereby translating ab parallel to itself. This parallel-translated version of ab will almost 
never equal ab for a simple reason:  To be equal to ab, it would, for starters, obviously have to 
be expressible entirely in terms of points a and b. This is generally not possible because the 
translator itself is generally not so expressible. 

Well then, suppose the translator were so expressible. Then it would be a scaled version of a–
b, which translates ab somewhere along the line thru itself. In this case, however, extension ut-
terly ignores the translation, thereby making the translated version of ab equal to it. This is 
mathematical poetry arising from extension’s strong respect for summary, which, in particular, 
requires that a point extended from itself vanishes. (For pleasure and education, you might com-
pose this simple poetry yourself.) 

In consequence, ab is not a conventional vector, even tho is looks like one (since it is a di-
rected line segment). Rather it is a bound vector, bound to the line thru itself, which will be 
called its confining space. Contrariwise, a–b actually is a conventional free vector, even tho it 
does not look like one (it is not a directed line segment). It does not look like a conventional vec-
tor because it has been unconventionally disciplined to treat points as bona fide geometric ob-
jects. 

This long-overdue discipline prepares you for a hint about the elegant relationship between 
bound and free:  What is a free vector extended from a simple point? For example, what is a–b 
extended from b? Extended from a? Extended from c, not on ab’s confining line? You can eas-
ily do the math for the first two questions by appealing to respect for summary (and you’ll get 
the same answer); but to really understand the elegant relationship, you need to make acquain-
tance with all readily imaginable bound things, and then watch how they generate their free 
counterparts. 

First, extend bound vector ab, call it v, from point c not on ab’s confining line. This sweeps 
v directly back from c, filling in as it returns, thereby generating bound bivector abc, call it B. 
This bivector is bound to the plane thru itself for the same reason a bound vector is bound to the 
line thru itself:  a parallel-translated version of abc cannot equal abc unless the translating 
free vector is expressible entirely in terms of generating points a, b, c. Next, extend bound bivec-
tor B from point d not on B’s confining plane. This generates bound trivector abcd, call it T, 
which is bound to the linear space thru itself. This space happens to model extent-{4} physical 
space (count the points required in the extension), so a bound trivector is a ceiling for that space. 
Here is a picture: 
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Readily imaginable bound things 

Now for the free counterparts to these bound things. You have already seen the free counter-
part to bound vector v = ab, namely free vector v = a–b. Note these two important properties: 

(1) Bound vector v is free vector v extended from a simple point on the confining space thru 
the bound vector, exactly. You just discovered this if you took the previous hint about the rela-
tionship between bound and free. This establishes the elegant relationship between a–b and ab,    
which removes the perplexity about the exact distinction between them. (Is it now clear why 
these corresponding vectors should be articulated in the same order?) To dignify the relationship, 
call free vector v = a–b the free part of bound vector v = ab. 

(2) The free vector is composed of separate, but otherwise exactly opposite bound things 
added together. 

The emphasized phrases are universal attributes of the free-bound relationship, so it will be 
useful to ponder them briefly before examining that relationship in detail. 

First, to extend free vector v from a simple point, the simplest strategy is to place v’s tail right 
over the point before extending. Poof, the tail-on-point part of the extension will vanish because 
a point extended from itself vanishes. This leaves the head of v extended from the point, which is 
just bound vector v. This is the poof method of point extension, even more wonderful than the 
poof method of point addition because it will apply to things of even higher extent. 

Second, ponder what it will mean for separate but otherwise exactly opposite bound things of 
higher extent to be added together. As with primitive things, it will mean that sum magnitude 
diminishes to zero as sum location recedes to infinity, which will, in the limit, shift focus from 
sum to summands. There is a transparent way to demonstrate this:  successively extend by the 
independent free vectors hidden within these higher-extent things. This will automatically pro-
duce roving things having separate but otherwise exactly opposite bound ends because free vec-
tors have those properties. As a bonus, it will show that even tho bound generates free, free does 
not generate bound, which is one reason we are still stuck in the free language. (Being stuck 
there impels us to persistently try to represent bound with free, typically points with vectors, 
which is inherently contradictory because free cannot generate bound.) 

Here are the free vectors hidden in the previous readily imaginable bound things: v = a–b, w = 
b–c and x = c–d  (gaze at the previous figure). 

To begin, extend v from w:  vw = v(b–c) = vb – vc. It would be enlightening to descend 
further toward points, but there is no real need to do so because you know, from the poof method 
of free-vector extension, that this is a pair of separate but otherwise exactly opposite bound vec-
tors added together. You also know, from freedom of the v and w arguments, that there are 
countless other exactly opposite bound vector pairs equivalent to this one, differing only in loca-
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tion, all having the same separation and direction. (This is area separation, as dimensionally dis-
tinguished from the length separation of a free vector; just as area magnitude is dimensionally 
distinguished from length magnitude, and so on.) 

Here is an intuitively appealing way to understand why these variously located v(b–c) exten-
sions are all equal:  incrementally approximate them in unison by sneaking up on free vector b–c 
as before, but extend at each step. The various bound vector results will dwindle away in lock 
step as they recede to infinity until they all seem to merge together as a tiny directed dash on the 
horizon. In the limit this dash loses (length) magnitude and location, which causes its various 
summand pairs to gain (area) separation and direction. At that limit, the focus necessarily shifts 
from non-existent sum to existent summands—these summand pairs have suddenly become a 
free bivector, call it B. 

Does free bivector B have an elegant relationship with bound bivector B? Here is where the 
poof method of point extension really shines:  To extend free B from a simple point on bound B’s 
confining plane, take advantage of B’s freedom to place one of its bound vector ends over the 
point, then extend from there. Poof, the summand-on-point part of the extension vanishes be-
cause it produces no area (technically: it produces Nothing, zero, having extent {3}). This leaves 
only the other summand extended from the point—a bound bivector that is just a filled-in ver-
sion of the free one with an incremented extent. This is indeed bound bivector B. To dignify this 
elegant relationship, call free B the free part of bound B. Query:  do you still get bound B if you 
put free B’s other end on the point before extending? What if you don’t place either end on the 
point? 

Now here is a curiosity:  to get bound B from free B, you had to use something bound, 
namely a simple point. However, the game we are now playing is to extend by free vectors hid-
den within bound things; and so far that has generated something free, namely B. 

To continue this game, extend free B from the last hidden free vector, x:  Bx = B(c–d) = 
Bc – Bd. You could descend further toward points, but there is no need to do so because you 
know, from a paragraph ago, that this is a pair of separate but otherwise exactly opposite bound 
bivectors added together. You also know, from freedom of the B and x arguments, that there are 
countless other exactly opposite bound bivector pairs equivalent to this one, differing only in lo-
cation, all having the same volume separation and direction. Here is an intuitively appealing way 
to understand why these variously located B(c–d) extensions are all equal:  incrementally ap-
proximate them in unison by sneaking up on free vector c–d as before, but extend at each step. 
The various bound bivector results will dwindle away in lock step as they recede to infinity until 
they all seem to merge together as a tiny directed patch on the horizon. In the limit this patch 
loses (area) magnitude and location, which causes its various summand pairs to gain (volume) 
separation and direction. At that limit the focus necessarily shifts from non-existent sum to exis-
tent summands—these summand pairs have suddenly become a free trivector, call it T. Here is a 
picture of it with the free consorts that led to it: 
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Extension generates free things from free vectors. 

By now there should be no need to explain the relationship between free T and bound T by 
describing how the former is the free part of the latter. In general, it should now be clear that ge-
neric bound a is just its free part a extended from simple point a lying within its confining space. 
This fills in free a and binds it thru point a. In algebra, a = aa. This is truly elegant because it 
universally relates free with bound, a relationship that applies even to the latecomers, scalars and 
points. It is an algebraic fact that weighted point aa equals aa.12 Which is to say, a weighted 
point is a bound scalar, and the typeface emphasizes this, as you may have noticed. So, even tho 
scalars aren’t points, since they have lower dimension, nevertheless, by extension they give 
magnitude to simple points; and that is the deep reason points wallow in numbers in the full 
Geometric Algebra. Hence scalars are really, really, full-fledged geometric objects. 

The previous derivations showed that when extension’s arguments are free, its result is also 
free. This holds for addition as well, and here is a peek at the reason:  When two elementary free 
things are so distinct that their sum cannot coalesce to a single thing, then that composite sum of 
free things is naturally declared free by fiat. On the other hand, when such a sum can coalesce to 
a single thing, it does so by algebraically pre-shaping and positioning the two free summands so 
that, when added, an end of one cancels an end of the other, poof (imagine adding, for example, 
two free bivectors from the previous figure). The canceling pre-shaping ensures that the two sur-
viving ends are exactly opposite (and separate, else they didn’t survive)—again something free. 
So, if you begin with free vectors as your primitive elements, then you will be stuck in the free 
sub-language of the full Geometric Algebra. Therefore, don’t imagine that you can represent 
points with the conventional free language alone—that will set you up for inconsistency and con-
fusion. 

The free sub-language has the lovely property that its elements can always be juxtaposed, 
which allows you to not only extend to higher dimensions, but to also retract to lower dimen-
sions. Extension and retraction have complementary symmetries that, together, provide full in-
formation about geometric relationships. It was Clifford’s genius to conjoin them into a very in-
formative, widely celebrated Clifford product.2 In Geometric Algebra this is called the geometric 
product, and it makes the free sub-language extremely versatile and expressive—it’s a wonderful 
place to get stuck in. 

How not to distinguish free from bound. 
When you examine any contemporary book on Geometric Algebra, you discover that the vec-

tors, bivectors and trivectors within it are all depicted filled-in, as tho they were bound. And yet 
they are allowed to roam around, as tho they were not filled in. How can these books get away 
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with such blatant inconsistency? By refusing to allow points into the formalities except as out-
casts, that’s how. The precise formal distinction between bound and free (coming up) disappears 
with points left in the interpretation. This renders the inconsistency so subtle it doesn’t get no-
ticed. 

It’s not as tho there were a malicious conspiracy to exclude points; it’s more subtle than that. 
Geometers, despite mathematics’ renowned proud rejection of meaning, approach their intrinsi-
cally meaningful subject with deeply held preconceptions that are fertile and mostly correct. 
Points within the symbolism would crumble these preconceptions around the edges like this:  
Points would need the same dimension as free vectors to add properly with them. This would 
require free vectors not to be filled-in for Grassmann’s gem to be able to assign dimension con-
sistently. Points? One-dimensional? Don’t kid me. Free vectors? Not filled-in? Ha!—how could 
such things have fixed length and direction? 

When reason and logical consistency nudge comfortable misconception, misconception typi-
cally remains complacent and unmoved; so points remain in their underwear breathing beer 
fumes. Except in one glorious yet sobering case:  the curious case of Hermann Gunther Grass-
mann. 

When he happened on points late in his investigations, he quickly realized that they must have 
the same order as free vectors, namely one. This of course had generative consequences for eve-
rything on up, so he gave them orders too, corresponding to the formal dimensions developed in 
this paper. His supple accommodation of points within the formalities has yet to be matched. 
That’s the glorious part. 

Here’s the sobering part:  his order was for him not dimension, but rather a way to get things 
to interact properly, with no other meaning. Listen to this: 

There are seven types of spatial magnitude, divided into four orders: 

1st order 1. Simple or multiple points 

  2. Straight lines of definite length and direction 

2nd order 3. Definite parts of definite infinite straight lines 

  4. Plane areas of definite magnitude and direction 

3rd order 5. Definite parts of definite infinite planes 

  6. Definite volumes 

4th order 7. Definite volumes 

    Volumes appear twice here, once as magnitudes of third order, once as magnitudes of fourth order, ac-
cording as they are regarded as products of three straight lines of definite direction and length or as 
products of four points.13 

Do you recognize these things? Here’s a hint:  the first item in each pair is bound, the second 
item is free with the same extent  (neglecting separation, which must not be neglected, as ex-
plained shortly). So, in the first order there are points and free vectors, in the second order there 
are bound vectors and free bivectors, and so on. Since each pair has the same numerical extent, 
you see that Grassmann’s order indeed corresponds to my formal dimension; but his dimension 
is, again, decidedly informal. This is most evident from his perplexing comment on “volumes”, 
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in which he explicates the generative distinction between a free trivector and a bound one (in that 
order), without making a dimensional distinction between them.14 

Why did he fail to do that? Remember, he arrived at points via roving arrows, the very same 
imagery we still have of free vectors. Even tho he explicitly discarded this imagery in favor of 
abstract algebra; nevertheless, free-vectors-as-roving-arrows must have become for him an invio-
lable concept, given how incredibly fruitful it had been. When he happened on points he was al-
ready comfortable with meaningless abstraction. Indeed, by then he embraced it; so he left order 
as an abstract formality that merely oiled the gears in his algebraic machinery. To have inter-
preted order geometrically would have required him to remove the shafts of his roving arrows—
his “straight lines of definite direction and length”—leaving only arrow-heads and arrow-tails 
possessing mysteriously fixed separation and direction. But he clearly had no inclination to in-
terpret order geometrically; and almost certainly no inclination to dismantle his fertile precon-
ceptions. So, here again, comfortable misconception remained complacent and unmoved—
Grassmann was human after all. That’s my guess. 

Finite intrinsically composite semantic formalities 
Intrinsically composite, as mentioned, is hard to imagine for same-extent free things, but easy 

to do so for bound things. Vectors bound to skewed non-intersecting lines, for example, do not 
have a common-enough extension factor to sum to a single thing; so their sum has extent {2, 2}. 
These vectors can, however, sum to two things in many different ways, and the most perspicuous 
is a free bivector perpendicular to a bound vector. In physical terms, the free bivector can articu-
late an angular velocity while the bound vector articulates a velocity along some line. Or these 
things can articulate a torque combined with a linear force. In short, addition of skewed lines 
generates an expressive screw algebra, reinvented by just about everyone who has really under-
stood Grassmann.15 

Are there any other imaginable same-extent bound sums that are intrinsically composite? 
How about the simple point sum a+b? It certainly is not intrinsically composite because it re-
duces to single midpoint 2m. In fact, the humdrum sum of most weighted points reduces to a 
single thing. Well then, how about the magic sum, free vector a–b? It is intrinsically composite 
because (1) it cannot reduce to just one thing, and (2) it can always be decomposed by being un-
bundled and re-bundled differently (that’s how the poof interactions work). To put this intuitively 
and generalize it, separate but otherwise exactly opposite bound things are too distinct to sum to 
a single thing. This should not come as a surprise—exactly opposite is quite distinct. Therefore, 
a free vector has extent {1, 1}; a free bivector has extent {2, 2}; and so on. 

This notation transparently displays the separated extent of free things, but it fails to make a 
further crucial distinction. For example, it would give a free bivector the same extent as the sum 
of skewed vectors bound to non-intersecting lines, extent {2, 2}. A free bivector is a sum of par-
allel vectors bound to non-intersecting lines, which generally produces a single extent {2} result 
(as previously demonstrated by approximation); except when the bound vectors are exactly op-
posite, in which case you get exactly opposite extent {2, 2}. Exactly opposite addition is what 
distinguishes free from bound; and such addition refuses to reduce to a single result by attempt-
ing to assign contrary properties to that result:  zero magnitude and infinite “location”. The infi-
nite “location” cannot be computed because it does not exist, but the zero magnitude is straight-
forward to compute. It is the semantic formality that shifts focus from sum to summands, from 
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infinite to finite, from bound to free. Which motivates a peculiar yet precise definition of a free 
thing:  a non-zero thing with zero magnitude. That is the crucial distinction. 

Let’s put it to use:  To be non-zero, a free thing, a bivector for example, must have formal 
separation (also readily computable), transparently annotated by composite extent {2, 2}. To fur-
ther indicate that this is yin-yang composite in a cohesive exactly opposite way, One could call it 
extent {2, 2}-with-zero-magnitude. This is an accurate but clumsy way of specifying that it is a 
free bivector. Since it is free, why not instead distinguish it with free non-bold notation?—extent 
{2}. Hence, extent {2} means cohesive extent {2, 2}-with-zero-magnitude. Similarly extent {1} 
means cohesive extent {1, 1}-with-zero-magnitude, and so on. 

You can think of cohesive free extent as addition’s respectful way of “extending”. When addi-
tion is presented with separate but otherwise exactly opposite bound summands, it leaves them 
“extended” not by incrementing extent, but rather by separating it in a formal way. So, a free 
vector has formal separated extent {1}, a free bivector has separated extent {2}, and so on, just 
the numerical dimensions meaning-imposers have been declaring all along. Which is to say, free 
extent is conventional geometric dimension (called grade in the conventional free language), 
now well distinguished. 

Distinguished by separation—that’s what a tag of zero magnitude means:  this thing is not 
filled in. Extension from a simple point fills it in, suddenly giving it non-zero magnitude equal to 
its just-departed separation. This magnitude becomes annotated with incremented bold singleton 
extent. Hence, separation describes a pair of opposite summands, something free; magnitude de-
scribes one result, something bound. The lowest extent magnitude is weight. 

Weight:  a scalar extended from a simple point generates weight—non-zero magnitude anno-
tated with incremented bold singleton extent {1}. So, algebraically, a scalar is free, meaning that 
it is a non-zero thing16 tagged with a formal magnitude of zero, like all free things in the full 
Geometric Algebra. Such lowest-extent “separation” is the value of the scalar, which gets “filled 
in”—acquires locus—by extension with a simple point. 

All this expressive formal distinction arises from finally letting points enter the symbolism as 
full-fledged geometric objects. To see that this emancipation is well worthwhile, examine the 
machinations necessary to keep points out while trying nonetheless to gain their expressive 
power. You need to impose... 

Models 
The three most popular models are the vector space model, the homogeneous model, and the 

conformal model. They are easiest to understand by the way they represent the plane. (Techni-
cally, the collection of primitive semantics is a model itself, Grassmann’s point model; but it, 
unlike these, is not a clever artifice imposed on the symbolism, rather it is the DNA from which 
the symbolism is derived:  Grassmann’s point model—seed for a growing symbolism; conven-
tional models—straightjackets for an inert symbolism.) 

The vector space model of the plane begins with a formal algebra of two free vectors, whose 
inherent limitations are traditionally overcome informally. First, since these vectors are free, 
where are you going to put them? Answer: implicitly anchor them to a point, the origin. With 
their tails firmly fixed in one place, their heads can represent points—you get free vectors and 
points! Free vectors?—but you just bound them! No, let them roam around when you need them 
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to. But then you can’t use them to represent points! No, just attach them to the origin when you 
need points. And so on. This has worked surprisingly well because, even tho the various fleeting 
distinctions all reside outside the symbolism, they nonetheless reside inside a human mind, 
which is superb with fleeting distinctions. 

Fleeting distinctions won’t do for a model, however, so the modeling community has decided 
that free vectors shall be explicitly anchored to the origin. This allows the fertile vector space 
idea to be unambiguously implemented on a computer. It has the ironic consequence that all the 
free elements in the language are effectively bound thru the origin, which has become semi-
formal since it now has explicit representation in the software, even tho it has none in the algebra 
proper. Modeling enthusiasts don’t mind this self-imposed handicap because they have more 
spiffy models that overcome it. 

There is a different way to overcome the handicap that should be clear by now:  having 
moved the origin from the informalities into the semi-formalities, why not continue this advance 
by moving it right into the formalities? As previously explained, this effectively moves some of 
the semantics into the symbolism. Here are the advantages of a meaningful symbolism:  nebu-
lous distinctions outside the language become precise distinctions inside the language, which 
now lets free things move parallel to themselves but requires bound things to stay in their confin-
ing spaces. Moreover, with the origin formal, everyone will have to implement it in the same 
way, as specified by the syntax of Geometric Algebra. (With the origin semi-formal, this is left 
to the digression of the implementer—need I say more?) The natural and expressive origin-in-
the-formalities solution is obvious only in retrospect because comfortable misconception has 
rendered it almost inconceivable. 

Consequently, modelers overcome the handicaps inherent in the vector space model in a dif-
ferent way, by moving to the homogeneous model. They always describe this by saying that you 
must move up an extra dimension above the plane. Not!—a healthy plane already requires three 
dimensions. You just saw that a plane with only two dimensions is crippled. By formally intro-
ducing the origin to heal it, you increased its dimension by one; but this is not an extra dimen-
sion, it is a missing dimension! 

The origin increases dimension by one because it is just as variable as a free vector—that’s 
what enables it to make a formal getaway from Hilbert’s beer hall. Speaking abstractly, dimen-
sion just counts the number of variables available. With two free vectors, you have two variables 
available corresponding to the separation (“length”) of each vector. But you don’t have points 
yet—you don’t really have a plane. To get points, you need a point to refer your free vectors to; 
and if that is done outside the symbolism, as it always has been in the last century, then you 
mangle your free vectors in the alleyway, as just described. By formally introducing a point for 
your free vectors to collaborate with, your symbolism suddenly acquires the missing variable, 
weight, which generates weighted points thruout the plane—this is now a genuine plane; it is not 
pointless anymore. It has abstract dimension 3 corresponding to formal extent {3}. 

Consequently, “move up an extra dimension” really means “use another free vector to stand 
in for the missing variable that a point would supply, had not preconception abandoned it in the 
gutter.” Stating it baldly (badly?) like this makes achieving it obvious:  let the separation of the 
“extra” free vector basis element correspond to the weight of the missing origin. Hence, distance 
above the plane corresponds to point weight; so unit points—locations—can be represented by 
anchored free vectors whose heads lie one unit above the original plane. The new unit-separated 
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plane becomes a model-with-“points”. (Modelers call them points, un-quoted, but their “points” 
are always free vectors masquerading as points. Such things aren’t real points—they are undesir-
ables, tacitly denied full geometric rights. This is easy to demonstrate:  real points with full rights 
would, for consistency, induce free vectors with separation, absent in every model except the 
generative one, Grassmann’s point model.) 

The homogeneous model is fun to play with because it shows, in an unexpected way, how 
perpendicular distance can precisely represent point weight. By applying some mind-boggling 
dimension hopping, you can use this model to articulate both free and bound things, thereby 
overcoming the shortcomings of the vector space model. Of course such contortions make sense 
only if you are absolutely determined to keep real points out of your formalities. 

Semi-formally anchored free vectors give the homogeneous model its own peculiar handi-
caps. To bypass my point sympathies, let a model enthusiast expose them: 

... the geometric algebra approach exposes some weaknesses in the homogeneous model. It turns 
out that we cannot really define a useful inner product in the representation space Rn+1 that repre-
sents the metric aspects of the original space Rn well; we can only revert to the inner product of Rn. 
As a consequence, we also have no compelling geometric product and our geometric algebra of 
Rn+1 is impoverished ...17 

Not to worry—there is another model that overcomes this fresh impoverishment, the confor-
mal model, “which requires two extra dimensions”,17 meaning one dimension above the defective 
homogeneous model, which constitutes one genuine dimension above Grassmann’s formal point 
space. The genuine extra dimension is given negative distances, thereby causing the augmented 
space to curve in such a way that extension in it can be projected down to rounds in the original 
space.18 So, in a conformal representation of physical space, the extension of three points gener-
ates the unique circle thru them; the extension of four points generates the unique sphere thru 
them. “Points” themselves are rounds with zero radius (null vectors). Clever, huh? It gets even 
better:  by including a special “point at infinity”, ∞, you can generate flats, rounds with infinite 
radius. Moreover... 

Our model also solves another problem that perplexed Grassmann throughout his life. He was fi-
nally forced to conclude that it is impossible to define a geometrically meaningful inner product be-
tween points. The solution eluded him because it requires the concept of indefinite metric that ac-
companies the concept of null vector. Our model supplies an inner product a⋅b that directly repre-
sents the Euclidean distance between the points. This is a boon to distance geometry, because it 
greatly facilitates computation of distances among many points.19 

Altho it is true that the bondage of Grassmann’s points a and b naturally precludes an inner 
product for them (since they cannot be juxtaposed), it is not true that this precludes finding the 
distance between them. Conjure up free vector a–b, and then use Grassmann’s inner product—
there is no need to hop on the conformal pony, lovely tho it may be, to access its high-
dimensional inner product. 

There is no question that models are lovely, with beautiful, fruitful mathematics generated by 
incredibly curious, creative mathematicians whom I deeply admire. But models typically solve 
problems they have inflicted on themselves by leaving the origin in the semi-formalities, where it 
cannot interact properly with its geometric kin. Even worse, they solve problems in an indirect, 
obscure and inefficient way that Grassmann’s full language can solve in a direct, transparent and 
efficient way. The formal point-generated distinction between bound and free (obviously lacking 
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in the previous purely free models) enables this. This distinction, coupled with Clifford’s unifica-
tion of the free sublanguage, gives you an exceptionally expressive way to articulate geometric 
concepts:  hop in the free sublanguage when you need its services; hop in the bound part when 
you need things in certain places; stay in the free sublanguage as much as possible because it is 
most versatile and expressive. 

To illustrate, simple subtraction of points a and b moved these bound things into the free lan-
guage where distance calculations are available. Simple subtraction can also generate rounds by 
moving points into the free language. For example, to generate the circle thru three points, sub-
tract the points pairwise to form three free vectors, then apply symmetry to find the center point. 
Finally, do a direct, transparent and efficient fixed-radius computation. Or just apply symmetry 
directly to generate peripheral points iteratively—this is even more direct, transparent and effi-
cient. (As for flats, why not generate them with ordinary low-dimensional extension? This avoids 
the superfluous imposed “point at infinity” and is (need I say?) direct, transparent and efficient.) 

Simple subtraction of separate but otherwise identical bound things can always be used to 
move them into the versatile free sublanguage. This is seldom convenient for anything but 
points, however, and seldom necessary either because the elegant relationship between bound 
and free offers an easier way to hop into the free sublanguage:  extract free parts. 

Extracting free parts is such a crucial bridge from the full Geometric Algebra into its free 
sublanguage that I like to consider it a primitive operation, on par with extension, retraction and 
their unification, the geometric product. This requires a pithy notation for extracting free parts; 
and it also requires the elegant relationship, a = aa, to be added to the symbolism as an axiom. 
(For the purpose of generating free parts, I’m guessing it really is an axiom:  If you don’t want it 
as an axiom, then you have to isolate free a on the right to directly generate free parts; and good 
luck with that. Remember, point a cannot participate in a retraction (an inner product), nor a 
geometric product, so how are you going to un-extend it to the scalar unit to isolate free a? If this 
intrigues you, study how Whitehead did it by crippling his language with tacit context.20) 

As a practical matter, free parts discard locus information so they are easy to compute. Espe-
cially easy if you keep your basis as free as possible by allowing just one point in it, the origin. 
With this discipline, the origin is the sole source of bondage; so extracting a free part amounts to 
extricating a (generally translated) origin. 

Finally, hopping into the bound part of Geometric Algebra from its free sublanguage is trivial 
in two ways: (1) Extend from a simple point. Since this point can be smoothly moved, any bound 
thing can be smoothly moved.  (2) Decompose the free thing using addition’s associative law. 
Suddenly you have two relatively bound things, one of which gets associated with something 
else, thereby transferring the relative bondage to it. The screw algebra illustrates this well, as the 
following section explains. 

The free–bound distinction is intrinsically semantic. 
Can the conventional rules of Geometric Algebra, the axioms, make the free–bound distinc-

tion? If so, they would have to distinguish between a sum and its summands. But they can’t—as 
far as the axioms are concerned, a sum and its added summands are literally equal. That is a 
great boon because it allows free and bound to be articulated together, and intermingled. For ex-
ample, altho the semantics make a clear distinction between magnitude and separation, the axi-
oms can’t because they cannot distinguish a sum from its summands. Instead, the axioms simply 
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articulate magnitude and separation simultaneously, indifferently; and automatically switch from 
one to the other as the situation dictates. To begin understanding this, scale a free vector as you 
sneak up on it. During the approximation you will be scaling a diminishing weight. At the limit, 
however, you will suddenly be scaling a separation—a startling revelation for me. (At that limit 
you will be simultaneously scaling a zero weight, which will of course remain zero.) The axi-
oms’ indifferent automatic switching allows free things to be decomposed into bound things 
when need be, or vice versa. In short, the axioms do their syntactic duty, which is:  let you ex-
press any valid sentence in Geometric Algebra, and let you transform that into more informative 
sentences. 

The free–bound distinction requires distinguishing between a sum and its summands; so if 
syntax can’t do it, semantics will have to. You have just seen that this is done by a formal zero–
nonzero distinction. To illustrate just how adamantly semantic such distinction is, let’s resolve 
the final dangling perplexity: 

“Vectors bound to skewed non-intersecting lines, for example, cannot sum to a single thing; 
consequently their sum has extent {2, 2}. These vectors can, however, sum to two things in many 
different ways, and the most perspicuous is a free bivector perpendicular to a bound vector.” ??? 

How can that be? A free bivector plus a bound vector seems to have extent {2, 2}, which 
would expand into extent {{2, 2}-with-zero-magnitude, 2}. Can these three things (when fully 
decomposed) possibly reduce to extent {2, 2}? Yes—the perspicuous sum is a convenient and 
illuminating canonical form, not a minimal form. A minimal form has extent {2, 2} and this is 
easy to see:  move the free bivector so that the tail of one of its ends is right on the tail of the 
bound vector. Conjoining these two vectors like this gives them a common extension factor that 
engages extension’s respect for summary. This collapses the two vectors to one, leaving two 
skewed bound vectors. (Here you see relative bondage, transparently exposed. Reverse the pro-
cedure orthogonally to get the canonical form.) 

So you see, for dimension to be well defined, addition must present the extent() operator 
with a minimal form. This is inherently computational—intrinsically semantic. Magnitude is an 
important part of this computation since it distinguishes free from bound, an essential distinction 
for a minimal form. 

(If you want addition to give you a canonical form, you will have to ask for it—that is how 
semantics works; and it is just one more reason an expressive geometric language requires se-
mantics. Whether your request should be formal or semi-formal is a question we haven’t pon-
dered adequately because we have shunned semantics.) 

The computer people know that, in pathological cases, computation cannot distinguish be-
tween zero and darn-close-to-zero. With respect to magnitude this means that, in pathological 
cases, the full Geometric Algebra cannot distinguish between free and bound—it will not pro-
duce a genuine minimal form. This does not, however, invalidate the distinction that magnitude 
makes; it just requires extra care to do well, as with all formal semantics. Keeping free things 
bundled goes a long way toward minimizing this problem—to repeat, stay as free as possible and 
take care to represent free bundles by individual names, which keeps their bundles intact during 
computation. This forces their zero magnitude to stay zero, unambiguously. The extreme way to 
do that is to remain in the comfortable conventional free language; but then you are back where 
you started—bigoted against points. 
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Finally, it is not as if mathematics has been immaculately devoid of formal semantics, tho 
many mathematicians are reluctant to admit it. What, for example, is a metric but a precise as-
signment of meaning to distance? That is just as semantic, and just as formal, as the distinction 
between free and bound; in fact it helps establish that distinction in the full Geometric Algebra. 
Mathematicians should come out of the closet about semantics. Computer scientists outed long 
ago and they feel liberated now. 
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from among the many others who hold similar opinions, saying, for example, that you 
can’t add London to Paris. 
4Harp. “Speaking of Space” p5. 
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5John Playfair, (Euclid’s) Elements of Geometry, J. B. Lippincott, 1857. p8: “A point is 
that which has position, but not magnitude.” This is Playfair’s elucidation of Euclid’s “that 
which has no parts, or which has no magnitude.” 
6Grass.1844 p162, Grass.1847 p326. He developed point sums obliquely in terms of center 
of gravity, and displacements from an arbitrary origin. For a direct midpoints-of-midpoints 
development, see Harp, “Adding Points”. 
7Grass.1844, p154–161. This discovery prompted Grassmann to abandon the notation he 
had used for displacements in the first half of his book. For commentary on the mathemat-
ics, see Harp, “Speaking of Space”, p43. 
8Grass.1844 p11: “I found that the analysis I had discovered did not touch only on the sub-
ject of geometry, as it seemed before. Rather, I soon realized that I had come upon the do-
main of a new science, of which geometry itself is only a special application.” 
9Grass.1844 p184–185, 192–198. 
10William Rowan Hamilton, On Symbolical Geometry, p2. Available from maths.tcd.ie/ 
pub/HistMath/People/Hamilton/ 
11Otto Blumenthal, Lebensgeschichte, Berlin, 1935 in David Hilbert, “Gesammelte Ab-
handlungen”, p403. 
12Set a` = aa, then a` = a`a in parallel with a = aa. In this uniform notation, a` denotes 
both magnitude and location, as bold generic a does. Similarly, non-bold a` is the free part 
of bold a`, namely its weight a. 
13Grass.1845 p289. Written by request for clarification from his editor. 
14Altho a bound trivector has extent {4}, a free trivector has extent {3}, meaning extent {3, 
3}-with-zero-magnitude. 
15Clifford was working on a screw algebra he called biquaternions when he encountered 
Grassmann’s ideas; and he realized Grassmann could unify his screw algebra. This is clear 
form the main subsection of Clifford’s previously cited “Applications of Grassmann’s Ex-
tensive Algebra”2, which is titled “On the Relation of Grassmann’s Method to Quaternions 
and Biquaternions; and on the Generalization of these Systems”. See also Clif.1873 p181, 
“Preliminary Sketch of Biquaternions”. 
16In the full Geometric Algebra zero cannot be a scalar or any other kind of number.  See 
Harp. “Speaking of Space” p45. 
17Dors.2007 p246. 
18Hence, you can import the conformal model into Grassmann’s language of imaginable 
space by augmenting that language with an extra dimension having Minkowski metric. 
This would require explicit projection back into imaginable space, which is certainly more 
expressive than the implicit projection of the conformal model, but more cumbersome 
when imaginable space is the only space of interest. But in that narrow case, why even 
bother with the conformal ploy?—Grassmann’s origin-in-the-formalities already articu-
lates imaginable space directly, transparently, efficiently. 
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19Hest.2001 Unified Algebraic Framework for Classical Geometry (UAFCG.html). I am 
guessing that Grassmann would have been as appalled by the conformal model as he was 
by Hamilton’s vector algebra:  it’s not his baby, and it demonstrates for the nth time that we 
still haven’t understood the bound part of his baby. 
20Alfred North Whitehead, Universal Algebra, Cambridge, 1898, p516. Whitehead called 
extracting a free part the “operation of taking the vector”. He achieved it by setting the free 
ceiling, the unit trivector, equal to scalar one, which introduces a tacit context that pre-
cludes moving to other dimensions. Even worse, it obscures important dimensional distinc-
tions. “Vector” had its Latin meaning, “carrier”, for Whitehead; and because free things 
are able to carry bound things of the same extent, vector became synonymous with free for 
him, which makes for perplexing reading. 
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An open letter concerning

WInHD: Wavelet-based Inverse Halftoning via Deconvolution

Ramesh Neelamani and Richard Baraniuk

Birth: The niche problem of inverse halftoning error-diffused halftones has been addressed by a
number of solid researchers using several practical and effective methods. However, due to the non-
linearity of the halftoning process and the complexities of the human visual system, the methods
proposed to date have been ad hoc.

At first glance, we thought that we had little chance of coming up with even a mediocre solution
to the nonlinear inverse halftoning problem. We pursued lines of research from photon-limited
imaging and Polya trees, but those approaches lead nowhere. One day, Rob Nowak found some
literature on an intriguing linear approximation to halftoning. We were pleasantly surprised when
a wavelet-thresholding based estimator based on this linear approximation produced competitive
results (not only in terms of the workhorse mean-squared-error (MSE) metric but also in terms of
a standard visual quality metric). We called our algorithm Wavelet-based Inverse Halftoning via
Deconvolution (WInHD).

We thought that WInHD would be a “slam-dunk” paper that would certainly interest the image
processing community, because in addition to presenting competitive results near the state-of-the-
art, our insights also reduced the inverse halftoning problem to a well-understood deconvolution
problem. Furthermore, assuming that the linear approximation was accurate and that the model
noise was Gaussian, we were able to derive and analyze bounds on WInHD’s MSE performance as
the image resolution increased.

With high optimism, we submitted a paper to a top-tier image processing journal.
Death: But alas, our enthusiasm was deflated due to the following review points, which we disagree
with.

• The linear approximation was deemed questionable. Any claims about optimality were
deemed to be overstated.

• Our results were deemed to be visually inferior. The metrics used used to evaluate our
simulation results did not conform to the quality of the images as perceived. We were urged
to seek input from the experts in the field and then publish the results of the survey.

The combination of lukewarm reviews and diverging author interests meant that the paper had to
be abandoned.
After-life: With its publication in Rejecta Mathematica, we would like to honestly address some
of the issues raised in our paper’s day of reckoning.

We believe that while the reviewers raised several valid points, the paper contained several
contributions that would benefit the image processing community. Addressing the linear approx-
imation point, we agree that a linear approximation to the halftoning process is not suitable for
all purposes. However, our view is that the surprising results obtained using such a model make
our paper more, not less, interesting. We do concede that the optimality claims made in the paper
need to be taken with a this linear approximation in mind. However, the limitations of our analysis
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have been clearly stated in the paper (it was termed as conditional optimality in the paper, but
perhaps our analysis required some bigger and bolder disclaimers).

On the visual quality issue, beauty indeed lies in the eyes of the beholder! Like a majority of
image processing practitioners, we agree that the MSE may be inadequate to measure the visual
quality of an image. However, in our paper, we employed all of the metrics that were accessible
in the literature (that is, we did not cherry-pick them) to substantiate that our method provided
“superior visual” performance (arguably a strong term to use, but certainly not obviously wrong).
Surveys can certainly be an effective approach to analyzing an image processing result. But, while
useful, conducting surveys for every image processing paper borders on onerous. As an alternative,
we published our code so that our results were reproducible and so that our method could be tested
on anyone’s images of choice.

The tussle about the visual quality improvement afforded by WInHD seems to have no easy
resolution in sight. However an even larger question emerges. Is it really necessary for follow-on
papers to always significantly improve upon previous results? Should a paper’s publishablity be so
heavily reliant on the improved results that it produces? How about insights that may open some
closed doors?
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WInHD: Wavelet-based Inverse Halftoning
via Deconvolution

Ramesh Neelamani∗ and Richard Baraniuk

Abstract

We propose the Wavelet-based Inverse Halftoning via Deconvolution (WInHD) algorithm to
perform inverse halftoning of error-diffused halftones. WInHD is motivated by our realization
that inverse halftoning can be formulated as a deconvolution problem under Kite et al.’s linear
approximation model for error diffusion halftoning. Under the linear model, the error-diffused
halftone comprises the original gray-scale image blurred by a convolution operator and colored
noise; the convolution operator and noise coloring are determined by the error diffusion tech-
nique. WInHD performs inverse halftoning by first inverting the model-specified convolution
operator and then attenuating the residual noise using scalar wavelet-domain shrinkage. Since
WInHD is model-based, it is easily adapted to different error diffusion halftoning techniques.
Using simulations, we verify that WInHD is competitive with state-of-the-art inverse halftoning
techniques in the mean-squared-error sense and that it also provides good visual performance.
We also derive and analyze bounds on WInHD’s mean-squared-error performance as the image
resolution increases.

Key words: inverse halftoning, error diffusion, deconvolution, wavelets, wavelet-vaguelette.

∗Contact author: R. Neelamani. neelsh@gmail.com.
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1 Introduction

Digital halftoning is a common technique used to render a sampled gray-scale image using only
black or white dots [1] (see Figures 3(a) and (b)); the rendered bi-level image is referred to as a
halftone. Inverse halftoning is the process of retrieving a gray-scale image from a given halftone.
Applications of inverse halftoning include rehalftoning, halftone resizing, halftone tone correction,
and facsimile image compression [2, 3]. In this paper, we focus on inverse halftoning images that
are halftoned using popular error diffusion techniques such as those of Floyd et al. [4], and Jarvis
et al. [5] (hereby referred to as Floyd and Jarvis respectively).

Error-diffused halftoning is non-linear because it uses a quantizer to generate halftones. Re-
cently, Kite et al. proposed an accurate linear approximation model for error diffusion halftoning
(see Figure 4) [6, 7]. Under this model, the halftone y(n1, n2) is expressed in terms of the original
gray-scale image x(n1, n2) and additive white noise γ(n1, n2) as (see Figure 1)

y(n1, n2) = Px(n1, n2) +Qγ(n1, n2)
= (p ∗ x)(n1, n2) + (q ∗ γ)(n1, n2), (1)

with ∗ denoting convolution and (n1, n2) indexing the pixels. The P and Q are the linear time-
invariant (LTI) systems with respective impulse responses p(n1, n2) and q(n1, n2) determined by
the error diffusion technique.

From (1), we infer that inverse halftoning can be posed as the classical deconvolution problem
because the gray-scale image x(n1, n2) can be obtained from the halftone y(n1, n2) by deconvolving
the filter P in the presence of the colored noise Qγ(n1, n2). Conventionally, deconvolution is
performed in the Fourier domain. The Wiener deconvolution filter, for example, would estimate
x(n1, n2) by inverting P and regularizing the resulting noise with scalar Fourier shrinkage. As we
will see, inverse halftoning using a Gaussian low-pass filter (GLPF) [8] can be interpreted as a naive
Fourier deconvolution approach to inverse halftoning.

Unfortunately, all Fourier-based deconvolution techniques induce ringing and blurring artifacts
due to the fact that the energy of edge discontinuities spreads over many Fourier coefficients.
As a result of this uneconomical representation, the desirable edge Fourier coefficients are easily
confounded with those due to the noise [9–11].

In contrast, the wavelet transform provides an economical representation for images with sharp
edges [12]. This economy makes edge wavelet coefficients easy to distinguish from those due to the
noise and has led to powerful image estimation algorithms based on scalar wavelet shrinkage [11, 13].

The wavelet transform was first exploited in inverse halftoning by J. Luo et al. [14]. Xiong et al.
extended this algorithm using non-orthogonal, redundant wavelets to obtain improved results for
error-diffused halftones [15]. Both these algorithms rely on a variety of steps such as clipping and
edge-adapted noise attenuation in the wavelet subbands to exploit different empirical observations.
However, these steps and their implications are not theoretically well-justified.

To simultaneously exploit the economy of wavelet representations and the interplay between
inverse halftoning and deconvolution, we propose the Wavelet-based Inverse Halftoning via De-
convolution (WInHD) algorithm (see Figure 2) [16]. WInHD provides robust estimates by first
inverting the convolution operator P determined by the linear model (1) for error diffusion and
then effectively attenuating the residual colored noise using wavelet-domain scalar shrinkage oper-
ations [13, 17]. Since WInHD is model-based, it easily adapts to different error diffusion halftoning
techniques. See Figure 3 for simulation results.
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Figure 1: Linear approximation for error diffusion halftoning. Under the linear model of [6, 7], the error-
diffused halftone y(n1, n2) comprises the original gray-scale image x(n1, n2) passed through an LTI system
P and white noise γ(n1, n2) colored by an LTI system Q. The systems P and Q are determined by the error
diffusion technique.

-- -
x̃(n1, n2) WInHD estimate

x̂λw(n1, n2)
P−1

Wavelet

shrinkage

λw

Halftone

y(n1, n2)

Figure 2: Wavelet-based Inverse Halftoning via Deconvolution (WInHD). WInHD inverts the convolution
operator P to obtain a noisy estimate x̃(n1, n2) of the gray-scale image. Subsequent scalar shrinkage with λw

in the wavelet domain (for example, level-dependent hard thresholding) effectively attenuates the residual
noise corrupting x̃(n1, n2) to yield the WInHD estimate x̂λw(n1, n2).

Unlike previous inverse halftoning algorithms, we can analyze the theoretical performance of
WInHD under certain conditions. For images in a Besov smoothness space, we derive the minimum
rate at which the WInHD estimate’s mean-squared-error (MSE) decays as the resolution increases;
that is, as number of pixels in the gray-scale image tends to infinity. We assume that the linear
model for error diffusion (1) is exact and that the noise γ(n1, n2) is Gaussian. Further, if the
gray-scale image x(n1, n2) contains some additive noise (say, scanner noise) before halftoning that
is Gaussian, then we show that the MSE decay rate enjoyed by WInHD in estimating the noise-free
x(n1, n2) is optimal; that is, no other inverse halftoning algorithm can have a better error decay
rate for every Besov space image as the number of image pixels increases.

Section 2 describes Kite et al.’s linear model for error diffusion halftoning from [6, 7]. Section
3 clarifies the equivalence between inverse halftoning and deconvolution and also analyzes Fourier-
domain inverse halftoning. Section 4 presents a brief overview of wavelets. Section 5 discusses the
proposed WInHD algorithm and its theoretical performance. Section 6 illustrates the experimental
performance of WInHD. Section 7 provides conclusions and future directions. A technical proof in
Appendix A completes the paper.
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(a) Original x(n1, n2) (b) Floyd halftone y(n1, n2)

(c) Gradient estimate [18] (PSNR = 31.3 dB) (d) WInHD estimate (PSNR = 32.1 dB)

Figure 3: (a) Original Lena image (512 × 512 pixels). (b) Floyd halftone. (c) Multiscale gradient-based
estimate [18], PSNR = 31.3 dB. (d) WInHD yields competitive PSNR performance (32.1 dB) and visual
performance. (All documents including the above images undergo halftoning during printing. To minimize
the halftoning effect, the images have been reproduced at the maximum size possible.) See Figure 8 for
image close-ups.
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Figure 4: (a) Error diffusion halftoning. The gray-scale image pixels x(n1, n2) are quantized to yield
y(n1, n2) and the quantization error e(n1, n2) is diffused over a causal neighborhood by the error filter H.
(b) The linear model approximates the quantizer with gain K and additive white noise γ(n1, n2) [6].

2 Linear Model for Error Diffusion

In this section, we describe the non-linear error diffusion halftoning and the linear approximation
proposed in [6, 7].

Digital halftoning is a process that converts a given gray-scale digital image (for example, each
pixel value ∈ [0, 1, . . . , 255]) into a bi-level image (for example, each pixel value = 0 or 255) [1].
Error diffusion halftoning is one popular approach to perform digital halftoning. The idea is to take
the error from quantizing a gray-scale pixel to a bi-level pixel and diffuse this quantization error over
a causal neighborhood. The error diffusion ensures that the spatially-localized average pixel values
of the halftone and original gray-scale image are similar; therefore, the halftone visually resembles
the gray-scale image. Figure 4(a) illustrates the block diagram for error diffusion halftoning. The
x(n1, n2) denote the pixels of the input gray-scale image and y(n1, n2) denote the bi-level pixels
of the output halftone. The x′(n1, n2), which yields y(n1, n2) after quantization, is obtained by
diffusing the quantization error e(n1, n2) over a causal neighborhood of x(n1, n2) using the error
filter H. The quantizer makes error-diffused halftoning a non-linear technique. Error diffusion
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Figure 5: Error filters h(n1, n2) for Floyd [4] and Jarvis [5] error diffusion. The quantization error at the
black dot is diffused over a causal neighborhood according the displayed weights.

techniques such as Floyd [4] and Jarvis [5] are characterized by their choice of H’s impulse response
h(n1, n2) (see Figure 5).

Recently, Kite et al. proposed an accurate linear model for error diffusion halftoning [6, 7].
This model accurately predicts the “blue noise” (high-frequency noise) and edge sharpening effects
observed in various error-diffused halftones. As shown in Figure 4(b), this model approximates
the effects of quantization using a gain K followed by the addition of white noise γ(n1, n2). The
halftone y(n1, n2) can then be written in terms of the gray-scale image x(n1, n2) and the additive
white noise γ(n1, n2) as in (1); the error diffusion technique determines the 2-dimensional (2-D)
frequency responses of the LTI filters P and Q as

P (f1, f2) :=
K

1 + (K − 1)H(f1, f2)
, (2)

Q(f1, f2) :=
1−H(f1, f2)

1 + (K − 1)H(f1, f2)
(3)

with P (f1, f2), Q(f1, f2), and H(f1, f2) denoting the respective 2-D Fourier transforms of p(n1, n2),
q(n1, n2), and h(n1, n2). For any given error diffusion technique, Kite et al. found that the gain K is
almost constant for different images. However, the K varied with the error diffusion technique [6];
for example, K = 2.03 for Floyd, while K = 4.45 for Jarvis. Figure 6 (a) and (b) illustrate
the radially-averaged frequency response magnitudes of the filters P and Q for Floyd and Jarvis
respectively; these responses are obtained by averaging over an annulus of constant radius in the
2-D frequency domain [1]. In [7], Kite et al. further generalized the linear model of (1) by using
different gains Ks and Kn in the signal transfer function P (f1, f2) and the noise transfer function
Q(f1, f2) respectively: P (f1, f2) := Ks

1+(Ks−1)H(f1,f2) and Q := 1−H(f1,f2)
1+(Kn−1)H(f1,f2) . In this paper, we

assume a single gain factor K for both the signal and noise transfer functions as proposed in [6].

3 Inverse Halftoning ≈ Deconvolution

Given a halftone y(n1, n2) (see Figure 4(a)), inverse halftoning aims to estimate the gray-scale
image x(n1, n2). In the classical deconvolution problem, given the blurred and noisy observation
y(n1, n2) as in (1) with known LTI filters responses p(n1, n2) and q(n1, n2), we seek to estimate
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Figure 6: Plots (a) and (b) respectively illustrate the radially-averaged frequency response magnitudes
|P (f1, f2)| (solid line) and |Q(f1, f2)| (dotted line) for Floyd and Jarvis. The high-pass |P (f1, f2)| explains
the sharpened edges, while the high-pass |Q(f1, f2)| explains the “blue noise” behavior in the halftones.

x(n1, n2). Thus, under the linear model of [6, 7], inverse halftoning can be posed as a deconvolution
problem.

3.1 Deconvolution

Due to the interplay between inverse halftoning and deconvolution, the well-studied deconvolu-
tion literature [19–21] can be exploited to understand inverse halftoning as well. Deconvolution
algorithms conceptually consist of the following steps:

1. Operator inversion
Invert the convolution operator P to obtain a noisy estimate x̃(n1, n2) of the input signal1

x̃(n1, n2) := P−1y(n1, n2) = x(n1, n2) + P−1Qγ(n1, n2). (4)

2. Transform-domain shrinkage
Attenuate the colored noise P−1Qγ(n1, n2) by expressing x̃(n1, n2) in terms of a chosen
orthonormal basis {bk}N−1

k=0 and shrinking the k-th component with a scalar λk, 0 ≤ λk ≤ 1 [22]

x̂λ :=
∑
k

〈x̃, bk〉λk bk =
∑
k

(〈x, bk〉+ 〈P−1Qγ, bk〉
)
λk bk (5)

to obtain the deconvolution estimate x̂λ.

The
∑

k〈x, bk〉λk bk in (5) denotes the retained part of the signal x(n1, n2) that shrink-
age preserves from (4), while

∑
k〈P−1Qγ, bk〉λk bk denotes the leaked part of the colored noise

1For non-invertible P, we replace P−1 by its pseudo-inverse and x(n1, n2) by its orthogonal projection onto the
range of P in (4).
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P−1Qγ(n1, n2) that shrinkage fails to attenuate. Clearly, we should set λk ≈ 1 if the variance
σ2
k := IE(|〈P−1Qγ, bk〉|2) of the k-th colored noise component is small relative to the energy |〈x, bk〉|2

of the corresponding signal component and set λk ≈ 0 otherwise. The shrinkage by λk can also be
interpreted as a form of regularization for the deconvolution inverse problem [20].

The choice of transform domain to perform the shrinkage in deconvolution (see Step 2 above)
critically influences the MSE of the deconvolution estimate. An important fact is that for a given
transform domain, even with the best possible λk’s, the estimate x̂λ’s MSE is lower-bounded within
a factor of 2 by [9–11] ∑

k

min
(|〈x, bk〉|2, σ2

k

)
. (6)

From (6), x̃λ can have small MSE only when most of the signal energy (=
∑

k |〈x, bk〉|2) and colored
noise energy (=

∑
k σ

2
k) is captured by just a few transform-domain coefficients — we term such a

representation economical — and when the energy-capturing coefficients for the signal and noise are
different. Otherwise, the x̃λ is either excessively noisy due to leaked noise components or distorted
due to lost signal components.

Traditionally, the Fourier domain (with sinusoidal bk) is used to estimate x(n1, n2) from x̃(n1, n2)
because it represents the colored noise P−1Qγ(n1, n2) in (4) most economically. That is, among
orthonormal transforms, the Fourier transform captures the maximum colored noise energy using
a fixed number of coefficients because it diagonalizes convolution operators [23]. Fourier-based
deconvolution performs both the operator inversion and the shrinkage simultaneously in the Fourier
domain as

X̂λf := Y (f1, f2)
1

P (f1, f2)
λf
f1,f2 (7)

with shrinkage

λf
f1,f2 :=

|P (f1, f2)|2
|P (f1, f2)|2 + Υ(f1, f2)|Q(f1, f2)|2 (8)

at the different frequencies. The Y (f1, f2) and X̂λf (f1, f2) denote the 2-D Fourier transforms of
y(n1, n2) and the deconvolution estimate x̂λf (n1, n2) respectively. The Υ(f1, f2) in (8) is called the
regularization term and is set appropriately during deconvolution [20]. For example, using the signal
to noise ratio to set Υ(f1, f2) = IE(|Γ(f1,f2)|2)

|X(f1,f2)|2 in (7) yields the Wiener deconvolution estimate [24];
the Γ(f1, f2) and X(f1, f2) denote the respective Fourier transforms of γ(n1, n2) and x(n1, n2). The

1
P (f1,f2) λ

f
f1,f2

in (7) constitutes the frequency response of the so-called deconvolution filter.
Fourier-based deconvolution suffers from the drawback that its estimates for images with sharp

edges are unsatisfactory either due to excessive noise or due to distortions such as blurring or ringing.
Since the energy due to the edge discontinuities spreads over many image Fourier coefficients, as
dictated by the MSE bound in (6), any estimate obtained via Fourier-domain shrinkage suffers from
a large MSE.

3.2 Inverse halftoning via Gaussian low-pass filtering (GLPF)

Conventionally, inverse halftoning has been performed using a finite impulse response (FIR) Gaus-
sian filter with coefficients g(n1, n2) ∝ exp[−(n2

1 + n2
2)/(2σ2

g)], where −4 ≤ n1, n2 ≤ 4, and σg
determines the bandwidth [8]. We can interpret inverse halftoning using GLPF as a naive Fourier-
domain deconvolution approach to inverse halftoning. This is substantiated by our observation that
the deconvolution filter 1

P (f1,f2) λ
f
f1,f2

(see (7) and (8)) constructed with the linear model filters P
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Figure 7: Comparison of radially-averaged frequency response magnitudes of the FIR GLPF (dashed line)
used for inverse halftoning in [8] with the response of the deconvolution filter (solid line) constructed with
filters P and Q for Floyd and with Υ(f1, f2) ∝ 1

f2
1 +f2

2
(see (7) and (8)). Ripples in the GLPF frequency

response result because the filter is truncated in space.

and Q for Floyd and with regularization Υ(f1, f2) ∝ 1
f2
1 +f2

2
has a frequency response that closely

matches the frequency response of the GLPF (see Figure 7) [8]. The corresponding inverse halftone
estimates obtained using simulations are also nearly identical. Predictably, GLPF estimates suffer
from the same drawbacks that afflict any Fourier-based deconvolution estimate — excessive noise
(when σg is small) or significant blurring (when σg is large). Exploiting the insights provided by
the deconvolution perspective, we can infer that unsatisfactory GLPF estimates result because the
Fourier domain does not economically represent images with edges.

4 Background on Wavelets

In contrast to Fourier representations, wavelets provide economical representations for a diverse
class of signals including images with edges [11, 12].

4.1 Wavelet transform

The 2-D discrete wavelet transform (DWT) represents a spatially-continuous image x(t1, t2) ∈
L2([0, 1)2) in terms of shifted versions of a low-pass scaling function φ and shifted and dilated
versions of prototype bandpass wavelet functions {ψLH , ψHL, ψHH} [11, 25]. For special choices
of φ and ψ’s, the shifted and dilated functions φj,k1,k2(t1, t2) := 2jφ(2jt1 − k1, 2jt2 − k2), and
ψbj,k1,k2 := 2jψb(2jt1 − k1, 2jt2 − k2) with b ∈ B := {LH,HL,HH}, where the LH, HL, and HH
denote the subbands of the wavelet decomposition, form an orthonormal basis. The j parameter
corresponds to the scale of the analysis, while the k1, k2 parameters correspond to the location. A
finite-resolution approximation xJ(t1, t2) to x(t1, t2) is given by

xJ(t1, t2) =
∑

k1,k2∈ZZ

sj0,k1,k2φj0,k1,k2(t1, t2) +
∑
b∈B

J∑
j=j0

∑
k1,k2∈ZZ

wbj,k1,k2ψ
b
j,k1,k2(t1, t2),
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with scaling coefficients sj0,k1,k2 := 〈x, φj0,k1,k2〉 and wavelet coefficients wbj,k1,k2 := 〈x, ψbj,k1,k2〉. The
parameter J controls the resolution of the wavelet reconstruction xJ(t1, t2) of x(t1, t2); in fact, the
L2 error ‖xJ − x‖2 → 0 as J →∞.

The DWT can be extended to transform sampled images as well. Consider, for example, a
sampled image obtained by sampling x(t1, t2) uniformly as

x(n1, n2) = N

∫ n2+1√
N

n2√
N

∫ n1+1√
N

n1√
N

x(t1, t2) dt1 dt2, 0 ≤ n1, n2 ≤
√
N − 1. (9)

For such N -pixel images, the N wavelet coefficients can be efficiently computed in O(N) operations
using a filter bank consisting of low-pass filters, high-pass filters, and decimators [11].

Purely for notational convenience, we henceforth refer to the location parameters k1, k2 by k
and do not explicitly specify the different wavelet subbands: wbj,k1,k2 and ψbj,k1,k2 for b ∈ B :=
{LH,HL,HH} will be referred to simply as wj,k and ψj,k. Further, we discuss the processing of
only the wavelet coefficients, but all steps are replicated on the scaling coefficients as well.

4.2 Economy of wavelet representations

Wavelets provide economical representations for images in smoothness spaces such as Besov spaces
[9, 12]. Roughly speaking, a Besov space Bs

p,q contains functions with “s derivatives in Lp,” with q
measuring finer smoothness distinctions [12]. Besov spaces with different s, p, and q characterize
many classes of functions; for example, B1

1,∞ contains piece-wise polynomial images [26]. If a
continuous-space image x(t1, t2) ∈ Bs

p,q, s >
2
p − 1, 1 ≤ p, q ≤ ∞, then the DWT coefficients

computed using the image samples (see (9)) satisfies (for all N)

1√
N

∑
j

2jq(s+1− 2
p

))

(∑
k

|wj,k|p
) q

p

 1
q

<∞, (10)

assuming the underlying wavelet basis functions are sufficiently smooth [10, 17, 27].2 From (10), we
can infer that the wavelet coefficients of Besov space images decay exponentially fast with increasing
scale j. Further, among all orthogonal transforms, the wavelet transform captures the maximum
(within a constant factor) signal energy using a fixed number of coefficients for the worst-case Besov
space signal [9].

4.3 Wavelet-based signal estimation

The wavelet transform’s economical representations have been exploited in many fields [11]. For
example, wavelets provide an effective solution to the problem of estimating signal samples x(n1, n2)
from additive white Gaussian noise (AWGN) corrupted observations [17, 27, 28]

x̃(n1, n2) = x(n1, n2) + γ(n1, n2), (11)
2The traditional Besov space characterizing equation in [10, 17, 27] assumes L2-normalized wavelet coefficients

wj,k; that is,
P

j,k |wj,k|2 = ‖x(t1, t2)‖22. Because the wj,k used in (10) are computed using signal samples x(n1, n2)

that satisfy
P

j,k |wj,k|2 =
P

n1,n2
|x(n1, n2)|2 ≈ N‖x(t1, t2)‖22, a normalization factor of

√
N is required.
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with γ(n1, n2) denoting AWGN samples of variance σ2. Such a setup is similar to estimating
x(n1, n2) from (4) but with P−1Q equal to identity. Simple shrinkage in the wavelet domain with
scalars λw can provide excellent estimates of x(n1, n2). This shrinkage is illustrated by (5) with
wavelet basis functions as bk’s and with identity P−1Q. For example, hard thresholding shrinks the
wavelet coefficients of x̃(n1, n2) with scalars

λw
j,k =

{
1, if |w̃j,k| > ρjσj ,

0, if |w̃j,k| ≤ ρjσj ,
(12)

with w̃j,k := 〈x̃ , ψj,k〉, σ2
j the noise variance at wavelet scale j, and ρj the scale-dependent threshold

factor (for examples, see [11, p. 442]) . When the pixels x(n1, n2) arise from a continuous-space
image x(t1, t2) ∈ Bs

p,q with s > 2
p − 1 and 1 ≤ p, q ≤ ∞, hard thresholding (with judiciously chosen

ρj [28]) provides estimates whose MSE-per-pixel decays at least as fast as N
−s
s+1 as N →∞ [17, 27].

Further, no estimator can achieve a better error decay rate for every x(t1, t2) ∈ Bs
p,q. If the threshold

factor ρj is chosen to be scale-independent, then the MSE decay rate is decelerated by an additional
logN factor.

In practice, the Wavelet-domain Wiener Filter (WWF) improves on the MSE performance
of hard thresholding by employing Wiener estimation on each wavelet coefficient [29, 30]. WWF
chooses

λw
j,k =

|wj,k|2
|wj,k|2 + σ2

j

. (13)

However, the coefficients wj,k required to construct the λw
j,k are unknown. Hence, a “pilot” estimate

of the unknown signal is first computed using hard thresholding. Then, using λw constructed with
the pilot estimate’s wavelet coefficients in (13), WWF shrinkage is performed. Sufficiently different
wavelet basis functions must be used in the two steps [29, 30].

5 Wavelet-based Inverse Halftoning Via Deconvolution (WInHD)

To simultaneously exploit the economy of wavelet representations and our realization about the
interplay between inverse halftoning and deconvolution, we propose the WInHD algorithm [16].
WInHD adopts the wavelet-based deconvolution approach of [10] to perform inverse halftoning.

5.1 WInHD algorithm

WInHD employs scalar shrinkage in the wavelet domain to perform inverse halftoning as follows
(see Figure 2):.

1. Operator inversion
As in (4), obtain a noisy estimate x̃(n1, n2) of the input image by inverting P.

2. Wavelet-domain shrinkage
Employ scalar shrinkage in the wavelet domain to attenuate the noise P−1Qγ(n1, n2) in
x̃(n1, n2) and obtain the WInHD estimate x̂λw(n1, n2) as follows:

(a) Compute the DWT of the noisy x̃ to obtain w̃j,k := 〈x̃ , ψj,k〉.
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(b) Shrink the noisy w̃j,k with scalars λw
j,k (using (12) or (13)) to obtain ŵj,k;λw := w̃j,k λ

w
j,k.

The colored noise variance at each scale j determining the λw
j,k is given by σ2

j :=

IE
(∣∣〈P−1Q γ , ψj,k

〉∣∣2).

(c) Compute the inverse DWT with the shrunk ŵj,k;λw to obtain the WInHD estimate
x̂λw(n1, n2).

For error diffusion systems, P−1 is an FIR filter. Hence, the noisy estimate x̃(n1, n2) obtained
in Step 1 using P−1 is well-defined. The subsequent wavelet-domain shrinkage in Step 2 effectively
extracts the few dominant wavelet components of the desired gray-scale image x(n1, n2) from the
noisy x̃(n1, n2) because the residual noise P−1Q γ(n1, n2) corrupting the wavelet components is
not excessive.

WInHD can be easily adapted to different error diffusion techniques simply by choosing the
gain K recommended by [6] and the error filter response h(n1, n2) for the target error diffusion
technique. K and h(n1, n2) determine the filters P and Q (see (2) and (3)) required to perform
WInHD. In contrast, the gradient-based inverse halftoning method [18] adapts to a given error
diffusion technique by employing a set of smoothing filters that need to be designed carefully.

5.2 Asymptotic performance of WInHD

With advances in technology, the spatial resolution of digital images (controlled by the number of
pixels N) has been steadily increasing. Hence any inverse halftoning algorithm should not only
perform well at a fixed resolution but should also guarantee good performances at higher spatial
resolutions. In this section, under some assumed conditions, we deduce the rate at which the
per-pixel MSE for WInHD decays as number of pixels N →∞.

Invoking established results in wavelet-based image estimation in Gaussian noise, we prove the
following proposition in Appendix A about the asymptotic performance of WInHD.

Proposition 1 Let x(n1, n2) be a N -pixel gray-scale image obtained as in (9) by uniformly sam-
pling a continuous-space image x(t1, t2) ∈ Bs

p,q with t1, t2 ∈ [0, 1), s > 2
p − 1, and 1 ≤ p, q,≤ ∞.

Let p(n1, n2) and q(n1, n2) denote known filter impulse responses that are invariant with N and
with Fourier transform magnitudes |P (f1, f2)| ≥ ε > 0 and |Q(f1, f2)| <∞. Let y(n1, n2) be obser-
vations obtained as in (1) with γ(n1, n2) zero-mean AWGN samples with variance σ2. Then, the
per-pixel MSE of the WInHD estimate x̂(n1, n2) obtained from y(n1, n2) using hard thresholding
behaves as

1
N

IE

(∑
n1,n2

|x̂(n1, n2)− x(n1, n2)|2
)
≤ C N −s

s+1 , N →∞, (14)

with constant C > 0 independent of N .

The above proposition affirms that the per-pixel MSE of the WInHD estimate decays as N
−s
s+1 with

increasing spatial resolution (N →∞) under the mild assumptions discussed below.
The central assumption in Proposition 1 is that the linear model (1) for error diffusion is

accurate. This is well-substantiated in [6, 7]. The conditions |P (f1, f2)| ≥ ε > 0 and |Q(f1, f2)| <∞
respectively ensure that P is invertible and that the variance of the colored noise Qγ(n1, n2) is
bounded. We have verified that for common error diffusion halftoning techniques such as Floyd
and Jarvis, the filters P and Q recommended by the linear model of Kite et al. satisfy these
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(a) Floyd halftone (b) Gradient estimate [18] (c)WInHD estimate

Figure 8: Close-ups (128 × 128 pixels) of (a) Floyd halftone, (b) Gradient estimate, and (c) WInHD
estimate.

conditions (see Figure 6). The final assumption is that the noise γ(n1, n2) is Gaussian; this is
required to invoke the established results on the asymptotics of wavelet-based estimators [17].
However, recently, wavelet-domain thresholding has been shown to be optimal for many other noise
distributions as well [31, 32]. Hence the noise Gaussianity assumption in Proposition 1 could be
relaxed.

Often, gray-scale digital images are corrupted with some noise before being subjected to halfton-
ing. For example, sensor noise corrupts images captured by charged coupled device (CCD) based
digital cameras. In such cases as well, WInHD can effectively estimate the noise-free gray-scale
image with an MSE decay rate of N

−s
s+1 as in Proposition 1. Further, WInHD’s MSE decay rate

can be shown to be optimal. The noise-free gray-scale image and resulting halftone can be related
using the linear model of [6, 7] as

y(n1, n2) = P [x(n1, n2) + β(n1, n2)] +Qγ(n1, n2), (15)

with β(n1, n2) denoting the noise corrupting the gray-scale image before halftoning. If the β(n1, n2)
is AWGN with non-zero variance, then we can easily infer that the residual noise after inverting
P in Step 1 of WInHD can be analyzed like white noise because its variance is bounded but non-
zero [10]. Hence we can invoke well-established results on the performance of wavelet-based signal
estimation in the presence of white noise [17, 27, 28] to conclude that no estimator can achieve a
better error decay rate than WInHD for every Besov space image. Thus, WInHD is an optimal
estimator for inverse halftoning error-diffused halftones of noisy images.

6 Results

We illustrate WInHD’s performance using 512×512-pixel Lena and Peppers test images halftoned
using the Floyd algorithm [4] (see Figure 3 and 8). All WInHD estimates and software are available
at www.dsp.rice.edu/software. We set the gain K = 2.03, as calculated for Floyd in [6, 7], and
use the Floyd error filter response h(n1, n2) (see Figure 5) to characterize the impulse responses
p(n1, n2) and q(n1, n2). Inverting the operator P (Step 2) requires O(N) operations and memory
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Table 1: PSNR and computational complexity of inverse halftoning algorithms (N pixels).

Inverse halftoning PSNR (dB) Computational
algorithm Lena Peppers complexity

Gaussian [8] 28.6 27.6 O(N)
Kernel [2] 32.0 30.2 O(N)

Gradient [18] 31.3 31.4 O(N)
Wavelet denoising [15] 31.7 30.7 O(N logN)

WInHD 32.1 31.2 O(N)

for a N -pixel image since P−1 is FIR. To perform the wavelet-domain shrinkage (Step 2), we choose
the WWF because it yields better estimates compared to schemes such as hard thresholding.

Estimates obtained by shrinking DWT coefficients are not shift-invariant; that is, translations of
y(n1, n2) will result in different estimates. Hence, we exploit the complex wavelet transform (CWT)
instead of the usual DWT to perform the WWF. The CWT expands images in terms of shifted and
dilated versions of complex-valued basis functions instead of the real-valued basis functions used by
the DWT [33, 34]; the expansion coefficients are also complex-valued. Wavelet-domain shrinkage
using WWF on the CWT coefficient magnitudes yields significantly improved near shift-invariant
estimates with just O(N) operations and memory. (The redundant, shift-invariant DWT can also
be used instead of the CWT to obtain shift-invariant estimates [11], but the resulting WInHD
algorithm requires O(N logN) operations and memory.) The standard deviation of the noise
γ(n1, n2), which is required during wavelet shrinkage, is calculated using the standard deviation of
y(n1, n2)’s finest scale CWT coefficients.

Figures 3 and 8 compares the WInHD estimate with the multiscale gradient-based estimate [18]
for the Lena image. We quantify the WInHD’s performance by measuring the peak signal-to-noise
ratio PSNR := 20 log10

512×255
‖bx−x‖2 (for 512 × 512-pixel images with gray levels ∈ [0, 1, . . . , 255]) with

x̂(n1, n2) the estimate. Table 1 summarizes the PSNR performance and computational complexity
of WInHD compared to published results for inverse halftoning with Gaussian filtering [8], kernel
estimation [2], gradient estimation [18], and wavelet denoising with edge-detection [15]. We can see
that WInHD is competitive with the best published results.

The WInHD estimate yields competitive visual performance as well. We quantify visual perfor-
mance using two metrics: weighted SNR (WSNR) [35, 36] and the Universal Image Quality Index
(UIQI) [37]. Both metrics were computed using the halftoning toolbox of [38]. The WSNR is
obtained by weighting the SNR in the frequency domain according to a linear model of the human
visual system [35, 36]. The WSNR numbers in Table 2 are calculated at a spatial Nyquist frequency
of 60 cycles/degree. The recently proposed UIQI metric of Wang et al. effectively models image
distortion with a combination of correlation loss, luminance distortion, and contrast distortion [37];
UIQI ∈ [−1, 1] with larger values implying better image quality. For the Lena image, WInHD’s
performance in terms of both the visual metrics is competitive with the gradient estimate’s perfor-
mance (see Table 2).
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Table 2: Visual metrics for inverse halftoned estimates of Lena.

Algorithm WSNR (dB) UIQI
Gradient [18] 34.0 0.62

WInHD 35.9 0.62

7 Conclusions

Using the linear error diffusion model of [6, 7], we have demonstrated that inverse halftoning can
be posed as a deconvolution problem in the presence of colored noise. Exploiting this new perspec-
tive, we have proposed the simple Wavelet-based Inverse Halftoning via Deconvolution (WInHD)
algorithm based on wavelet-based deconvolution to perform inverse halftoning. Since WInHD is
model-based, it is easily tunable to the different error diffusion halftoning techniques. WInHD
yields state-of-the-art performance in the MSE sense and visually.

WInHD also enjoys desirable theoretical properties under certain mild conditions. For images
in a Besov space, WInHD estimate’s MSE is guaranteed to decay rapidly as the spatial resolution
of the input gray-scale image increases. Further, if the gray-scale image lies in a Besov space and is
noisy before halftoning, then WInHD’s MSE decay rate cannot be improved upon by any estimator.

We have assumed a priori knowledge of the error diffusion filter in this paper. However, the error
diffusion filter is not always known. Under such circumstances, the error diffusion filter coefficients
could be estimated by integrating adaptive techniques such as the one proposed by Wong [39] into
our algorithm. However, this remains a topic of future study.

To facilitate efficient hardware implementation, in addition to requiring minimal memory and
computations, an inverse halftoning algorithm should also be compatible with fixed-point digital
signal processors. For example, the gradient-based algorithm [18] is optimized for hardware imple-
mentation while still obtaining good inverse halftoning results. Since our focus in this paper has
been primarily theoretical, we have not specifically addressed any hardware optimization issues.
The design of a hardware-compatible inverse halftoning algorithm based on WInHD is a topic of
interesting future study.

A Decay Rate of WInHD’s MSE

We deduce the asymptotic performance of WInHD as claimed in Proposition 1.
Instead of analyzing the problem of estimating x(n1, n2) from y(n1, n2), we can equivalently

analyze the estimation of x(n1, n2) from the noisy observation x̃(n1, n2) obtained after inverting P
(see (4)). The reduction is equivalent because P (f1, f2) is known and invertible (since |P (f1, f2)| ≥
ε > 0).3

The frequency components of the colored noise P−1Qγ(n1, n2) corrupting the x̃(n1, n2) in (4)
is given by Q(f1,f2)Γ(f1,f2)

P (f1,f2) . These frequency components are independent and Gaussian because
the Fourier transform diagonalizes convolution operators. Since |P (f1, f2)| is strictly non-zero and
|Q(f1, f2)| is bounded, the variance of Q(f1,f2)Γ(f1,f2)

P (f1,f2) is uniformly bounded — say with variance ς2

3Since the filter P−1 is FIR for error diffusion systems, boundary effects are negligible asymptotically because
only a finite number of boundary pixels are corrupted.
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— at all frequencies.
Because the estimation error due to wavelet-domain hard thresholding is monotone with re-

spect to noise variance [10], the error in estimating x(n1, n2) from (4) using wavelet-domain hard
thresholding is less than the error in estimating x(n1, n2) observed in white noise as in (11) but
with variance ς2. Hence the per-pixel MSE in estimating x(n1, n2) from (4) can be bounded with
the decay rate N

−s
s+1 established for the white noise setup (see Section 4.3) to yield (14) with a

constant C > 0 independent of N [27, 28]. 2
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An open letter concerning

Mass matrix transforms in qubit field theory

Marni Sheppeard

To whomever ...

This small paper reports on the initial observation that Carl Brannen’s mass operators are
naturally expressed as discrete Fourier series, common in the theory of quantum computation. Our
obsession with these simple matrices has generated a great deal of criticism. Lubos Motl, the string
theorist, called us F–ing Crackpots on my blog, Arcadian Functor, and all attempts to have this
paper endorsed for the preprint arxiv failed. Although it is to be recognized that the abundance
of errors in much of my writing is regrettable, in my experience these errors are never corrected
by the people who think that this work is trivial and wrong, because it would be beneath them to
consider it seriously.

The difficulty here is that our motivation for studying these mass operators lies not in standard
particle physics, nor in standard theories of gravity, neither of which have anything whatsoever to
say about the rest masses of fundamental particles. Unfortunately, a basic idea in quantum field
theory is that certain parameters, such as mass, vary continuously, in a very complex way, from
singular raw values. An unwavering belief in this idea leads people to conclude that simple formulae
for rest masses cannot exist. Of those knowledgeable people willing to consider that such formulae
may exist, most appear to believe that one should make no attempt to publish papers about it
until one has constructed a complete theory of quantum gravity.

Since Carl Brannen, and many others, have now traveled a fair distance down this road, it
seems that a rather impressive theory will actually exist before a single paper is published in a
highly regarded peer reviewed journal. Fortunately, thanks to the Internet Age, a rapidly growing
number of people are now working on this subject.
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Mass matrix transforms in qubit field theory

M. D. Sheppeard

Department of Physics and Astronomy

University of Canterbury,

Christchurch, New Zealand

Circulant mass matrices for triples of charged and neutral leptons have been studied in

the context of qubit quantum field theory. This note describes the discrete Fourier transform

behind such matrices, and discusses a category theoretic interpretation of these operators.

PACS numbers: 03.67.-a, 03.67.Lx, 04.60.-m

INTRODUCTION

Using a measurement algebra approach to QFT, Brannen [1] recently recovered the Koide [2]

formula

(
√
me +

√
mµ +

√
mτ )2 =

3
2

(me +mµ +mτ ) (1)

for charged lepton masses in the form of a 3 × 3 circulant complex matrix, whose eigenvalues

squared give the lepton masses to experimental precision. This analysis was extended to a set of

three neutrinos, and the mass ratio predictions agree with preliminary neutrino oscillation data.

Here it is observed that the discrete Fourier transform [3] provides a further interpretation of

the mass matrices, both as a duality between operators and eigenvalues and also as a link to the

theory of quantum computation [4].

It is expected that other triples of Standard Model particles, namely baryons and mesons, will

also be associated with 3×3 matrix operators of the same kind in accord with their preon structure

[1] and the association of spatial directions to the number of particle generations, given by the three

primitive idempotents of the measurement algebra.
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FOURIER TRANSFORMS AND MASS MATRICES

A circulant matrix is built from its first row by adding cyclic permutations. In particular, a

3× 3 circulant takes the form 
A B C

C A B

B C A

 (2)

where A, B and C will be complex numbers. Note that any such circulant is a combination of the

three permutations (123), (231) and (312). For real eigenvalues λk it is essential that A be real

and C = B. Thus a mass matrix [1] takes the form

C = η


1 reiθ re−iθ

re−iθ 1 reiθ

reiθ re−iθ 1

 (3)

for real η, r and θ. In terms of these parameters, the eigenvalues are given by

λk = η(1 + 2rcos(θ +
2πk

3
))

The Koide formula (1) follows when r2 = 1
2 and this choice may be applied also to the neutrino

matrix.

In the n × n case, the discrete Fourier transform [3][4] interchanges the set of eigenvalues λk

(assumed distinct) and matrix entries A1, A2, A3, · · · , An via

λk =
∑
j

e
2πijk
n Aj (4)

Aj =
1
n

∑
k

e−
2πijk
n λk

Viewing the eigenvalues as a diagonal matrix, the transform interchanges the bases of projection

operators and cyclic permutations. For real eigenvalues (m1,m2,m3) with mi = λ2
i in the above,

and letting ω = e
2πi
3 , the transform takes the diagonal matrix to the circulant

m1 +m2 +m3 m1ω +m2ω
2 +m3 m1ω

2 +m2ω +m3

m1ω
2 +m2ω +m3 m1 +m2 +m3 m1ω +m2ω

2 +m3

m1ω +m2ω
2 +m3 m1ω

2 +m2ω +m3 m1 +m2 +m3


which must be the square of (3) since the square of a circulant is a circulant. Thus a choice of

scale is specified by η = 1
3(m1 +m2 +m3).
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A 3 × 3 matrix is viewed as a function on the discrete torus Z3 × Z3, which has a quantum

description and a convolution product for matrices [3]. Letting Dij = δijω
i there is a Weyl rule

D ◦ (312) = ω(312) ◦D

where the phase 2π
3 is proportional to ~−1. This associates Planck’s constant with a hierarchy N

determined by the size of the matrix, but the continuum limit is obtained via ~→∞ rather than

~→ 0.

If masses are to be thought of as quantum numbers, then why are their values so awkward in

comparison to, say, spin? For 2 × 2 circulants with entries A and B, the eigenvectors are (1, 1)

and (1,−1) with eigenvalues (A + B) and (A − B) respectively. For example, for the Pauli swap

matrix σx, with A = 0, the spin eigenvalues are ±1. Complexity in the eigenvalue set only arises

in dimension three or higher.

Degenerate eigenvalues λk
η ∈ {1 − r, 1 − r, 1 + 2r} occur when θ = 0 and all matrix entries

are real. Although this pattern does not describe the leptons, we observe that it is the typical

composition of masses for baryon constituents. Since such mass operators arise in a preon model

that unifies particle structure, it is expected that all standard model bound states and resonances

may be arranged into mass triples.

In quantum computation [4] a Fourier transform is also defined in this way, acting on a set of

n basis states. For example, an N qubit computation uses n = 2N basis states. The transform is

unitary and it may be built from unitary gates, namely the Hadamard gate H = 1√
2
(σx + σz) and

the series

Bk =

 1 0

0 e
2πi

2k


By analogy, a mass computation with 3N basis states uses ternary digits, so the gates Bk would

be replaced by gates

Tk =


1 0 0

0 e
2πi

3k 0

0 0 e
4πi

3k

 (5)

which are also unitary. In general, the Fourier operator entries Fij are given by ωij , and the theory

of mutually unbiased bases generalises the Pauli operator algebra in all prime power dimensions.

A basic time evolution operator exists for each dimension n. Note, however, that unlike in

conventional constructions, this local evolution is not in any way associated with an emergent
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cosmic clock, the latter being more closely related to the scale ~, given here by the matrix dimension.

That is, this approach does not assume a globally defined time for a nonsensical universal observer.

DISCUSSION

The mass matrices arise from a one dimensional discrete transform, which itself involves com-

mutative variables. However, it is seen that phase space variables satisfy the Weyl algebra of

the quantum plane. Is there a noncommutative transform that extends this analysis to nonclas-

sical underlying spaces? This is relevant to the question of extending the perturbative rest mass

computations [1] to nonperturbative regimes.

Kapranov [5] has recently considered path spaces approximated by cubical paths, each of which

is represented by a noncommutative monomial in the spatial directions. In dimension d > 1 a

noncommutative Fourier transform relates measures on the space of paths to functions of the non-

commuting variables. The basic idea is that a path integral is just a map from a noncommutative

ring to a suitable commutative subring. In this way, particle masses [1] could arise as path integral

invariants.

Taking T-duality seriously, one also expects to deal with nonassociativity. From a category

theoretic point of view, both noncommutative and nonassociative structures can be dealt with in

a unified framework. The cohomological element of interest here is the parity cube axiom, which

describes the now familiar pentagon law on five of its faces. In a sufficiently lax algebraic setting,

such as for tetracategories, the sixth face may break this law, providing the deformation parameter

that turns a pentagon into a hexagon representing the permutation group S3 [6].

The generation count by primitive idempotents [1] is confirmed by the string theoretic index

theorem argument applied to the Riemann moduli space of the six punctured sphere, which has an

orbifold Euler characteristic [7] of -6. The six punctures are associated to the six faces of a cube via

a dual vertex, which is thickened to a sphere. Note that cohomological integrals for such moduli

spaces commonly appear in QFT computations as multiple zeta values and polylogarithms.

For helpful discussions I thank Carl Brannen, Michael Rios, Matti Pitkanen, Tony Smith and

Louise Riofrio.
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