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An open letter concerning

Classification via incoherent subspaces

Karin Schnass

It all started with a talk by Efi, a fellow PhD-student (now Dr. Effrosyni Kokiopoulou),
on classification and dimensionality reduction which gave me an idea. Classification was foreign
territory to me so I discussed it with her and in a moment when my other projects where going
nowhere, I sat down and thought about my idea in detail. As a result I developed a mathematical
model of how signals in different classes could be represented and regarding how you could then
try to classify them. And I was happy for a while. Unfortunately the characterization I had come
up with was at the same time too complicated and too vague to be actually calculable. So when
I wanted to test the idea on some real data I had to simplify to a problem I could solve. The
implementation with all the optimizations in the intermediate steps turned out to be a nightmare
but after many long months of suffering the algorithm spit out something that seemed to work
pretty well, and I wrote up my results and included them in my thesis.

As a next step we submitted the paper to IEEE Trans. on Pattern Analysis and Machine
Intelligence. The reviews were late and ambiguous. Reviewer 1 thought that the paper was garbage,
because it did not beat state of the art and was mathematically unsound. In his opinion putting
N d-dimensional vectors as columns into a matrix did not result in a d × N matrix. Reviewer
2 was not too thrilled but gave us the benefit of doubt. Reviewer 3 seemed to understand and
appreciate the idea and gave a lot of useful comments. We were asked to make a major rewrite.
We clarified the model on the coefficients, included test results on another database, emphasized
that computational complexity should be a criterion when talking about state of the art, etc., and
resubmitted. We got rejected — the general opinion seemed to be that it was too mathy and did
not fit into the narrow view of 2 out of 3 reviewers.

So we thought we would try to submit to a journal with a broader scope: IEEE Trans. on
Signal Processing. The reviews were again late and ambiguous. Reviewer 1 and 2 again thought
that it was too mathy, though the idea novel and the paper technically sound. Reviewer 3 again
understood and appreciated the idea and made a lot of useful comments. The general verdict was
to reject with encouragement to resubmit. Since we do not think that another rewrite will improve
the paper, we made the changes requested by Reviewer 3 and now hope that the paper will make
a nice contribution to Rejecta Mathematica. After all, it was mainly rejected because it contained
“too much math”.

Finally, I have learned one thing: never try to introduce new ideas into an old field that is not
your own.
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Classification via incoherent subspaces

Karin Schnass∗and Pierre Vandergheynst†‡

Abstract

This article presents a new classification framework that can extract individual features per
class. The scheme is based on a model of incoherent subspaces, each one associated to one
class, and a model on how the elements in a class are represented in this subspace. After the
theoretical analysis an alternate projection algorithm to find such a collection is developed. The
classification performance and speed of the proposed method is tested on the AR and YaleB
databases and compared to that of Fisher’s LDA and a recent approach based on on `1 minimi-
sation. Finally connections of the presented scheme to already existing work are discussed and
possible ways of extensions are pointed out.

1 Introduction

A general approach in classification is to select features of the signal at hand and to get a decision
by comparing them to the equivalent features of already labelled signals with a simple classifier
like nearest neighbour, e.g. [3], or nearest subspace, cp [9]. This of course raises the question
which features to take. For face recognition, which is the example we will use here, some classic
and simple, because linear, features are Eigen, [19], Fisher, [6], or Laplace features, [7]. However,
as these classifiers are very simple and the features not adjusted to them, their performance is
somehow disappointing, and researchers turned to the development of more complicated nonlinear
features and kernel methods, [10, 15].
Here we start from the point of view that the potential of linear methods and simple classifiers
is not exhausted. In order to achieve better results, we propose to give up the uniformity of
features over classes and mix the feature selection with the classifier. To motivate the idea of class
specific features let us have a look at classical nearest neighbour (NN) and nearest subspace (NS)
classification using linearly selected features and give it a new interpretation.
Assume we have N already labelled training signals y ∈ Rd belonging to c classes, where each class
i contains ni elements, i.e.

∑
i ni = N . We denote the j-th signal in class i as yji , i = 1 . . . c, j =

1 . . . ni. For each class i we collect all its training signals as columns in the d× ni class matrix Yi,
i.e. Yi = (y1i . . . y

ni
i ), and these class matrices in turn are combined into a big d × N data matrix

Y = (Y1 . . . Yc) = (y11 . . . y
n1
1 . . . y1c . . . y

nc
c ). Given a new signal ynew the goal is to decide which class

it belongs to with the help of the already labelled training signals.
The classical first step is to select relevant features fnew from ynew via a linear transform A, where
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A is a d× d matrix of rank r ≤ d.

Feature Selection: fnew = Aynew. (1)

The exact shape of the transform is determined by the training signals and their labels. For instance
for Fisher’s LDA A is chosen as the orthogonal projection that maximises the ratio of between-class
scatter to that of within-class scatter, [6].
In the second step these features are compared to the features f ji := Ayji of the training signals yji .
In case of the nearest neighbour classifier this means that the new signal will get the label of the
training signal which has features that maximally correlate with the features of the new signal, ie.

NN Labelling: inew = argmax
i

max
j
|〈f ji , fnew〉|. (2)

If by analogy we define the feature matrix for a class i as Fi = AYi we can rewrite the expression, for
which we are seeking the maximal argument, and combine the feature selection with the labelling
step,

max
j
|〈f ji , fnew〉| = max

j
|〈Ayji , Aynew〉|

= max
j
|〈A?Ayji , ynew〉|

= ‖(A?AYi)? ynew‖∞, (3)

where the matrix M? denotes the transpose of M , the p-norm of a vector is defined by ‖v‖p :=
(
∑

k v(k)p)1/p for 1 ≤ p < ∞ and ‖v‖∞ := maxk |v(k)| and the qp-norm of a matrix by ‖M‖q,p =
max‖v‖q=1 ‖Mv‖p. Thus another way of looking at the classification procedure is to say that for

every class we have a set of sensing signals A?Ayji and the new signal belongs to the class which
has the sensing signal closest to it. From this point of view we also see that the scheme will work
stably only if two conditions are fullfilled. Every new signal is well represented by one vector in its
class, i.e. a lot of its energy is captured by the projection on one vector, and no two sensing vectors
from different classes are the same or close to each other, i.e.

max
i 6=k,j,l

|〈A?Ayji , A?Aylk〉| = ‖(A?AYi)?(A?AYk)‖1,∞ ≤ µ. (4)

Let us do the same analysis for the nearest subspace classifier. Again the features of the new signal
are compared to those of the training signals. For each class the features of the training signals
in it span a subspace and the new signal will get the label of the class for which the orthogonal
projection of the features of the new signal on the corresponding subspace has the highest energy.
Let Qi be an orthonormal system1 spanning the subspace for class i, then i.e.

NS Labelling: inew = argmax
i
‖Q?i fnew‖2. (5)

Again we can combine the feature selection with the labelling by manipulating the expression, we
want to maximise,

‖Q?i fnew‖2 = ‖(A?Qi)?ynew‖2.

If we compare to NN classification we see that again for every class we get a set of sensing signals,
the columns of the matrix A?Qi, and that the new signal belongs to the class for which the sensing

1Qi can for instance be found via a (reduced) qr-decomposition of AYi
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signals can take out the most energy (or for which the biorthogonal system to (AQi)
? provides

the best representation). Again this leads to two conditions for the classification to work, which
are however more complex. First every new signal should be comparatively well represented in the
biorthogonal system (Q?iA)† determined by its class and second no signal which is in the span of
the sensing signals of one class should be well representable in the biorthogonal system of another
class.

max
i 6=k

max
‖x‖=1

‖(A?Qi)†A?Qjx‖2 = ‖(A?Qi)†A?Qjx‖2,2 ≤ µ. (6)

Summarising our findings for both nearest neighbour and nearest subspace classification we see
that in both cases for every class we have a set of sensing signals or a subspace defined by the
feature selection transform. There is a model how signals from this class are represented by this
subspace, which implicitly determines which norm is used for the classification, ‖ · ‖∞ for NN, ‖ · ‖2
for NS, and at the same requires that the interaction of subspaces measured by a corresponding
matrix norm is small, i.e. that they are incoherent.
The classification scheme presented in this paper is based on the following idea. We give up the
restriction that the subspaces associated to each class are generated canonically as a function of the
feature selection transform and the training samples, i.e. A?AYi in the case of nearest neighbour
classification, but generate them individually. This idea can also be motivated using the example
of face recognition, to which we will apply our scheme later. Uniform feature extraction would
mean realising that in general the most relevant parts of a face are the regions of the eyes, nose
and mouth. Thus in order to classify a person we would focus on the eyes, nose and mouth regions
while ignoring the hairstyle and comparing them to the eyes, nose and mouth regions of all the
candidates. While this makes sense in general it will fail as soon as the set of candidates contains
identical twins which can only be distinguished by the birth mark one has on his cheek. So while
for most people the cheek is not a very distinguishing feature for the twins it is and it would be
better to remember for them the cheek instead of for instance the nose. Even without the extreme
example of the identical twins individual features are natural considering that the people we meet
every day all have eyes, mouths and noses but not all of them have distinguishing eyes, mouths and
noses. Instead they may have distinguishing birthmarks, scars, chins, etc. and a representation
using these features will characterise them well but nobody else.
In the next section we will introduce the mathematical framework on which we base our classification
scheme. It consists of a model of subspaces associated to each class and a model of how the elements
in this class are represented in this subspace, which together lead to a natural choice of the norm
we have to use for the classification and an incoherence requirement on the subspaces. In Section 3
we will develop a comparatively simple algorithm to learn these subspaces from the training signal,
which we will use to classify faces in Section 4. In the last section we summarise our findings, point
out connections to related approaches and outline possibilities for future work.

2 Class Model

The most general model for the subspaces we can think of is to ascribe to every class i a set of
si vectors f ji , j = 1 . . . si, which are collected as columns in the matrix Fi = (f1i . . . f

si
i ). These

correspond to the features that characterise elements of this class, so every element yi in class i can
be written as a combination of these class specific features with coefficients xi and some residual
ri, orthogonal to the feature span,

yi = Fixi + ri, rki ⊥ sp(Fi). (7)
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The condition that features of a class well characterise the elements in it translates into a property of
the coefficients xi, i.e. when measuring their strength in some norm it is higher than the strength of
the coefficients we would obtain trying to represent the element by features of the wrong class. Since
without further restrictions on the set of features per class it is not straightforward to calculate the
coefficients of the best representation of signal in a class, we will sacrifice generality for simplicity
and for the rest of the analysis assume that for every class we have the same number of features s
and that they form an orthonormal system, i.e. F ?i Fi = Is. We will point out how to deal with the
more general situation in the last section. Given that the features of each class form an orthonormal
system we can easily calculate the coefficients of the best representation of a general signal y in
class i as F ?i y. The question is now how should we measure these coefficients in order to correctly
classify our images, i.e. which norm ‖ · ‖ should we choose such that for all yi in class i we have

‖F ?j yi‖
‖F ?i yi‖

< 1, ∀j 6= i. (8)

To answer this question we will introduce three models on the coefficients, each leading to a certain
p-norm as optimal measure.

2.1 1-Sparse Coefficients

Assume that all signals we want to classify can be well represented by one element of one class, i.e.

yi = Fixi + ri with ‖xi‖0 = 1, (9)

where ‖ · ‖0 counts the number of non-zeros entries. An example for this situation would be trying
to sort pictures of monkeys, snails, cucumbers and broccoli into animal and vegetable pictures.
Even though monkeys and snails are both animals their shapes are very different, meaning that we
can think of them as orthogonal, and the same goes for the shapes of cucumbers and broccoli in
the other class. Let x be the absolute value of the only non-zero component of the coefficients xi.
We immediately see that whatever p-norm we apply using the correct class the response is always
equal to x, ‖F ?i yi‖p = ‖xi‖p = x. Therefore to find out which p-norm is best we will use a trick
that involves estimating the ratio we need to be smaller than 1 for successful classification with the
triangular equation and a matrix norm bound. So for general 1 ≤ p, q ≤ ∞ we get,

‖F ?j yi‖p
‖F ?i yi‖p

≤ ‖F ?j Fi‖q,p
‖xi‖q
‖xi‖p

+
‖F ?j ri‖p
‖xi‖p

. (10)

In the special case where the coefficients are 1-sparse and thus ‖x‖q = ‖x‖p,∀p, q, this means that

‖F ?j yi‖p
‖F ?i yi‖p

≤ ‖F ?j Fi‖q,p +
‖F ?j ri‖p

x
.

The smallest qp norm of a matrix is obtained when p = ∞ and q = ∞. Then it corresponds to
the maximal absolute entry of the matrix F ?j Fi, i.e. the maximal absolute correlation between
two features from different classes. Since in that case also the response from the residual ‖F ?j ri‖p
is minimal we get the best bound choosing the ∞-norm for the classification. Summarising our
findings we see that in case of a sparse model on the coefficients, the ∞ norm is optimal and
that the incoherence requirement we get for classification to work stably is that no two features
from two different classes are too similar, but it does not matter if a feature is moderately close
to all features in a different class or even representable by them. Thinking to the example of the
animal vs. vegetable pictures this means that even though you can approximate the shape of a
snail combining the shape of the cucumber and the broccoli, classification using the ∞ norm will
work well because no animal shape alone closely resembles a vegetable shape and vice versa.
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2.2 Flat Coefficients

Let us now assume the completely opposite distribution of the coefficients, i.e. to represent one
element in a class we need to combine all features of that class with equal magnitudes, i.e.

yi = Fixi + ri with |xi(k)| = x, for k = 1 . . . s. (11)

An example would be trying to label pictures of national flags and with the corresponding countries.
For simplicity assume that the only flags in question are those of the Netherlands, Germany, Estonia,
Lithuania and Gabon, which all consist of three horizontal stripes in various colours, i.e. red, white
and blue for the Netherlands, black, red and yellow for Germany, blue, black and white for Estonia,
yellow, green and red for Lithuania and green, yellow and blue for Gabon, cp. Figure 1. Good
features in this example are the colours of the stripes. Each national flag has its three distinctive
colours which appear in an equal amount but are not exclusive to this flag.

Netherlands Germany Estonia Lithuania Gabon

Figure 1: National Flags

In this case we get the maximal response from the correct class when choosing p = 1, i.e.
‖x‖1 = sx. Also from Inequality (10) we see that using q = ∞ and p = 1 gives a very beneficial
bound.

‖F ?j yi‖1
‖F ?i yi‖1

≤
‖F ?j Fi‖∞,1

s
+
‖F ?j ri‖1
sx

.

Remembering that ‖F ?j Fi‖∞,1 is smaller than the absolute sum of all the correlations between
features in one class and features in another class we get a less sharp version of the above bound,

‖F ?j yi‖1
‖F ?i yi‖1

≤
∑

k,l |〈fki , f lj〉|
s

+
‖F ?j ri‖1
sx

.

which shows that for the case of flat coefficients we have a quite different coherence constraint.
Even if a few features in a class are very close to features in another class or actually the same
this is not a problem as long as the majority of features from two different classes are not very
correlated.
In the example of the flags this means that even though two different national flags might share up
to two colours, as long as we take into account that all three colours have to appear to the same
degree, we can still identify the country from a picture of the flag.

2.3 Unstructured Coefficients

The last case we are going to discuss is probably the most common and concerns coefficients which
follow neither of the two extreme distributions discussed above or where the exact distribution is
unknown. An example is the task of face recognition, i.e. identifying a person from a picture.
Obvious features in this case are noses, eyes and mouths. In any picture most of these features will
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be visible but their strength will largely depend on the facial expression and lighting conditions.
To choose a good p-norm for the classification in this case, we again bound the norm ratio we need
to be small.

‖F ?j yi‖p
‖F ?i yi‖p

≤
‖F ?j Fixi‖p
‖xi‖p

+
‖F ?j ri‖p
‖xi‖p

. (12)

Since we do not have information about the shape of the coefficients, the first term on the right
hand side can be as big as ‖F ?j Fi‖p,p = max‖x‖p=1 ‖F ?j Fi‖p. Taking into account the orthogonality
of the features in the matrices Fi, we see that for p = 2 this term can only be equal to one if two
classes overlap, meaning that there is a signal whose features in its own class can be represented
by features in a different class. For p = 1, p =∞, however, the corresponding term is equal to the
maximum absolute column/row sum of the F ?j Fi and it can be easily seen that this can be larger
than one, even if for no signal the features in its own class can be fully represented by features in
a different class. Similar results hold for all other p 6= 2, thus making p = 2 the best choice in this
case. Observe also that p = 2 corresponds to measuring the energy captured by the features of a
class. Thus if the features are well chosen also the second term in Inequality (12) can be expected
to be small.
Finally we see that choosing p = 2 puts the following incoherence constraint on the feature spaces.
No signal that can be constructed from features in one class should be well representable by features
in another class. This constraint is the strongest we have encountered so far, which is only natural
since we do not have an assumption on coefficient distribution. Coming back to our example it also
corresponds quite naturally to what one would expect from face recognition, ie. that in all pictures
enough distinctive features are visible and no matter the lighting condition or facial expression two
people can always be uniquely identified from their features.

Of course there is ample opportunity to develop more class models, assuming different distribu-
tions on the coefficients and using more exotic norms. Also one could use different assumptions on
the features, i.e. non-orthogonal. However, in this paper we will focus on finding a practical way
to calculate sensing or feature matrices for classification based on the three main models.

3 Finding Feature/Sensing Matrices

From the analysis in the last section we can derive two types of conditions that the collection of
features or subspaces Fi needs to satisfy. The first type describes how features from different classes
should interact, i.e. the interplay measured in the appropriate matrix norm should be small, and the
second type how the features should interact with the training data, i.e. the ratio of the response
without to within class should be small. The problem with both kinds of conditions is they are
not linear and difficult to handle. For instance calculating the (2, 2)-norm is equivalent to finding
the largest singular value and calculating the (∞, 1)-norm is even NP-hard. We will therefore start
with a very simple approach that will lead to a reasonably fast algorithm, and in the last section
point out how to extend it to include more complicated constraints. Instead of requiring explicitly
that the interplay between features from different classes is small, hereby avoiding to investigate
what small means quantitatively, we use the intuition that this should come as free side effect
from regulating the interaction with the training data, and simply ask that F is a collection of
orthonormal systems Fi each of rank s. What we would actually like to do about the interaction
of the features with the training data is to minimise the ratio between the response of the training
data without to within class. However, a constraint involving the ratio is not linear and very hard
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to handle. We will therefore split it into two constraints that guarantee that the ratio is small if
they are fulfilled. The first constraint is that the response within class is equal to a constant βp
which we choose to be the maximally achievable value given the rank of the orthonormal systems
and p. The second constraint is that the response without class is smaller than a constant µp,
whose dependence on s, p, d is more complicated and will be discussed later. Define the two sets
Fs and Fµ as

Fs := {F = (F1, . . . , Fc) : F ?i Fi = Is}
Fµ := {F : ‖F ?i yki ‖p = βp,

‖F ?j yki ‖p ≤ µp, ∀k, i, j 6= i}, (13)

then our problems could be summarised as finding a matrix in the intersection of the two sets, i.e.
F ∈ Fs ∩ Fµ. However, since this intersection might be empty, we should rather look for a pair of
matrices, each belonging to one set, with minimal distance to each other measured in some matrix
norm, eg. the Frobenius norm, denoted by ‖ · ‖22,

min ‖Fs − Fµ‖2 s.t. Fs ∈ Fs, Fµ ∈ Fµ. (14)

One line of attack is to use an alternate projection method, i.e. we fix a maximal number of
iterations, an initialisation for F 0

s and then in each iterative step do:

• find a matrix F kµ ∈ argminF∈Fµ ‖F k−1s − F‖2

• check if ‖F k−1s −F kµ‖2 is smaller than the distance of any previous pair and if yes store F k−1s

• find a matrix F ks ∈ argminF∈Fs ‖F kµ − F‖2

• check if ‖F ks − F kµ‖2 is smaller than the distance of any previous pair and if yes store F ks

If both sets are convex, the outlined algorithm is known as Projection onto Convex Sets (POCS) and
guaranteed to converge. Non convexity of possibly both sets, as is the case here, results in much
more complex behaviour. Instead of converging, the algorithm just creates a sequence (F kµ , F

k
s )

with at least one accumulation point. We will not discuss all the possible difficulties here but refer
to [18], where all details, proofs and background information can be found and wherein the authors
conclude that alternate projection is a valid strategy for solving the posed problem.
To keep the flow of the paper, we will not discuss the two minimisation problems that need to
be alternatively solved here. The interested reader can find them, including the exact parameter
settings in the simulations of the next section, in the appendix. Instead we will discuss how to set
the parameters βp, µp and possible choices for the initialisation F 0

s .
As mentioned above we choose βp to be the maximally achievable value. An orthonormal system
of s feature vectors can maximally take out all the energy of a signal,

‖F ?i yi‖2 ≤ ‖yi‖2. (15)

As the signals are assumed to have unit norm, this energy is at most one and we set β2 = 1. The
maximal 1-norm of the vector F ?i yi of length s with energy 1 is

√
s. This is attained when all

features of one class take out the same energy, i.e. the absolute values of the entries in F ?i yi are
all equal to 1/

√
s. This leads to β1 =

√
s. The infinity norm F ?i yi corresponds to the maximal

inner product between one of the feature vectors and the signal. As both the feature vector and

2We use this notation instead of the more common variant ‖ · ‖F to avoid confusion.
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the signals are normalised, this can be at most one and so we set β∞ = 1.
From the discussion in the last section we see that the parameter µ reflects the incoherence we
require between features from different classes. If we have d ≥ c · s, it is theoretically possible to
have c subspaces of dimension s which are mutually orthogonal to each other, and µ could be zero.
As soon as the above inequality is reversed, because for instance the actual dimension of the span of
all features, i.e. rank(F ), is smaller than d, not all subspaces corresponding to the different classes
can be orthogonal but will have to overlap. How the size of this overlap, i.e. coherence, should
be measured, is determined by the choice of p-norm for classification. For instance for p = 2 the
coherence was measured by ‖F ?j Fi‖2,2 and from theory about Grassmannian manifolds, see [18],
we know that the maximal coherence between two of c subspaces of dimension s embedded in the
space Rd can be lower bounded by

max
i 6=j
‖F ?j Fi‖22,2 ≥

s · c− d
d(c− 1)

. (16)

The problem with setting µ as above is that we are not controlling the interaction between the
sets of features directly but only indirectly over the training data. There the worst case might not
be assumed and so µ as above would be too large. Also for the cases p = 1,∞ we do not have a
similar bound. Therefore instead of trying to analyse theoretically how to set µ, where we have to
deal with too many unknowns, we use the above bound as an indication of order of magnitude and,
when testing our scheme on real data, vary the parameter µ. Lastly for the initialisation for each
class we choose the orthogonal system that maximises the energy taken from this class opposed to
the energy taken from the other classes, i.e.

F 0
s,i = argmin

F ?i Fi=Is

‖F ?i Yi‖22 −
∑

j 6=i
‖F ?i Yj‖22. (17)

This problem can be easily solved, by considering the rewritten version of the function to minimise,

min
F ?i Fi=Is

trace
(
F ?i (YiY

?
i −

∑

j 6=i
YjY

?
j )Fi

)
. (18)

If UDU? is an eigenvalue decomposition of the symmetric (Hermitian) matrix YiY
?
i −

∑
j 6=i YjY

?
j ,

then the minimum is attained for F 0
s,i consisting of the s eigenvectors corresponding to the s largest

eigenvalues.

4 Testing

To test the proposed scheme we use two face databases, the AR-database, [13] and the extended
Yale B database, [1]. First we will test the validity of all three approaches on the AR-database,
even though it is intuitively clear that the most appropriate model for faces corresponds to p = 2.
Using the experience from the AR-database we will then run similar tests on the extended Yale B
database using only the most appropriate model p = 2.

4.1 AR-Database

For the test we used a subset of images from the AR-database. For each of the 126 people there are
26 frontal images of size 165 × 120 taken in two separate sessions. The images include changes in
illumination, facial expression and disguises. For the experiment we selected 50 male and 50 female
subjects and for each of them took the 14 images with just variations in illumination and facial
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s\ µ√
s

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

2 60 56 56 57 60 58 60 61 66 64 69
3 52 46 48 46 51 51 53 58 62 61 61
4 62 52 54 55 55 56 56 54 55 57 61
5 64 59 56 56 55 58 61 63 66 68 68
6 61 54 57 54 56 59 62 58 61 71 71
7 57 55 57 55 59 57 58 62 61 68 69

Table 1: Number of misclassified images on the AR-database for p = 1 and varying values s and µ.

s\µ 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1 57 58 59 58 60 59 59 58 58 58 62
2 51 49 51 51 51 55 57 57 59 58 56
3 47 42 45 50 53 53 54 61 62 61 64
4 46 42 41 41 47 48 51 62 63 61 63
5 48 43 40 44 50 51 52 55 55 59 61
6 49 45 42 45 49 48 51 54 54 57 58
7 45 43 43 43 45 45 48 53 51 54 52

Table 2: Number of misclassified images on the AR-database for p = 2 and varying values s and µ.

expression, neutral, light from the right and left, front light, angry, happy, sleepy. The all together
700 images from the first session were used as training data and the 699 images3 from the second
session for testing. Every image was converted to grayscale and then stored as a 19800 dimensional
column vector. The images from the first session were stored in the 19800 × 700 matrix Y 1 and
those from the second in the 19800× 699 matrix Y 2. All images (columns) in Y 1 were re-scaled to
have unit norm. In order to speed up the calculations, we first applied a unitary transform, which
does not change the geometry of the problem, but reduces the size of the matrices, i.e. we did a
reduced QR-factorisation decomposing Y 1 into the 19800× 700 matrix Q with orthogonal columns
and the 700× 700 upper triangular matrix R and set Ỹ 1 = Q?Y 1 = R and Ỹ 2 = Q?Y 2.
We tested the proposed scheme for all three choices of p and varying values of µp scaling from 0
to 10% of βp and number of features per class varying from 1 to 7. The choice of the maximal
outside-class contribution µmax = 0.1βp was inspired by the bound in (16). If we take as effective
signal dimension d = 700 and assume that the space should not only accommodate the 100 different
people in our training set but all people, i.e. we let c go to infinity, the bound approaches

√
s/d

which is 0.1 if s = 7 and 0.0378 if s = 1. The maximal number of features per class is 7, since
we only have 7 test images and so it does not make sense to look for spaces of higher dimension
containing all test images. Note also that for s = 1 the three schemes are the same, so the results
are only displayed once. For each set of parameters we calculated the corresponding feature matrix
using the algorithm described in the last section on the images from the first session. We then
classified the images from the second session using the appropriate p-norm. The results are shown
in Tables 1, 2 and 3.

As we can see we get the best performance for p = 2, followed by p = 1 and p =∞. This comes
as no surprise when considering the structure of our data. Intuitively the important features of a
face are eyes, nose and mouth. Since the people in the pictures have different facial expression,
usually not all of these features will be active explaining why p = 1 is not the most appropriate

3700 minus corrupted image w-027-14.bmp
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s\µ 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

2 55 62 59 54 56 52 54 61 63 64 62
3 55 63 58 56 60 58 59 63 65 69 69
4 55 64 60 57 59 58 58 61 67 70 67
5 55 60 59 55 58 57 57 60 66 71 69
6 55 61 59 54 57 56 56 65 67 72 69
7 55 61 59 55 56 54 55 66 66 71 70

Table 3: Number of misclassified images on the AR-database for p = ∞ and varying values s and
µ.

model. On the other hand we can expect to have more than one feature active at the same time
even if not to the same extent. Using p = ∞ we lose the information given by these secondary
active features while with p = 2 we still incorporate it into the final decision.
We can also see that 0.1% of µ as maximally allowed outside class ’energy’ seemed to have been a
good choice as we can always see a small decrease and large increase of the error going from 0 to
0.1, with the best range for p = 1 and p = 2 between 0.01 and 0.03 and for p = ∞ between 0.02
and 0.06. For p = 1 we get better performance for the lower dimensions, which seems reasonable
because there the equal energy distribution over the features is easier achieved. For p = 2 on the
other hand the better performance is achieved with higher dimensions, which are able to capture
more important side details. Finally for p = 2 the results seem equal for all dimensions. A possible
explanation is given by the initialisation, which ensures that for all dimensions the first, most
promising direction is included.
Still in all three cases in the most promising ranges the proposed scheme outperforms a standard
method like Fisher’s LDA, [6]. The best result by LDA is obtained when using the original (not-
normalised) images and the highest possible number of discriminant axes c − 1 = 99. In this case
nearest neighbour classification, corresponding to p =∞ but with non orthogonal features, fails to
identify 59 images, and nearest subspace classification, corresponding to p = 2 fails to identify 71
images. When concentrating on the results for p = 2, which is the most sensible choice given the
structure of the data, p = 2, we also see that the scheme performs well in comparison to a recent,
successful method based on `1 minimisation, [20]. The best result reported there is a success rate of
94.99%, meaning 35 misclassified images, which is 5 images better than our best case of 40 errors.
Encouraged by the promising results we now turn to testing our scheme on the extended Yale B
database.

4.2 Extended Yale B Database

From the extended Yale B database we used the 2414 frontal face images, about 64 images taken
under varying illumination conditions for each of the 38 people. For the test we randomly split the
set of images per person into an equal number of training and test images, using one more training
than test image in case of an odd number of images per class. We then ran our classification scheme
with the number of features per class varying from 2 to 5 and thanks to the experience gained from
the AR-database with the values of µ running only from 0 to 0.05. For the computation of the fea-
ture matrices we used the same simplifications as described for the AR-database. For comparison
we ran Fisher’s LDA with 37 and 30 discriminative axes in combination with the nearest neighbour
classifier. This procedure was repeated 19 times and the mean of all 20 runs was computed.

The results of our method can be found in Table 4. While Fisher’s LDA on average missclassi-
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s\µ 0 0.01 0.02 0.03 0.04 0.05

2 19.80 ± 5.74 20.30 ± 5.80 22.25 ± 7.20 23.85 ± 6.81 25.25 ± 6.66 26.25 ± 6.61
3 14.15 ± 4.37 13.60 ± 4.22 13.85 ± 3.73 15.85 ± 5.25 16.40 ± 4.78 17.55 ± 6.00
4 15.75 ± 3.82 14.05 ± 3.49 13.95 ± 3.55 15.35 ± 3.95 16.45 ± 4.10 16.95 ± 4.30
5 15.70 ± 4.78 15.00 ± 4.91 14.45 ± 4.30 15.30 ± 3.34 17.60 ± 4.65 17.65 ± 4.55

Table 4: Mean ± standard deviation of misclassified images on the Extended Yale B database for
p = 2 and varying values s and µ.

fied 23.30 ± 6.42 images (success rate of 98.07 ± 0.53%) using 37 discriminant axes and 231.55 ±
23.48 images (success rate 80.78 ± 1.95%) using 30 discriminant axes, our method in the best case
only misclassified 13.60 ± 4.22 images (success rate 98.87 ± 0.35%). In general it outperformed
Fisher’s LDA for a wide range of values for µ and s.
Comparison to the `1-minimisation scheme in [20] is harder, as it seems that there only a single run
was used. However, their best success rate of 98.26%, achieved at the same time as Fisher’s LDA
with 30 discriminant axes achieved 87.57% (the maximal rate for Fisher’s LDA we encountered in
20 runs was 84.73%), is still below our best average rate of 98.87%.

To illustrate the results in Figure 2 and to confirm the motivation in the introduction for using
different features for different classes, we show what happens to the training images of two different
subjects when projected on the features of their own class and the other subject’s class, using the
settings that gave the best performance. As expected the projections on features of their own class
nicely filter out common traits like eyes, mouths and noses, but on top of that the features of the
first subject capture the very distinctive birth mark on his right cheek. The projections on the
wrong class on the other hand are not only much weaker (note the difference in scale) but also less
clear. Two overlapping sets of features seems to appear at the same time, the ones that belong to
the subject in the image and the ones that the projection is trying to filter out.

Summarising the results, we can say that our method outperforms a classic scheme like Fisher’s
LDA. In comparison to the `1-minimisation scheme in [20] its best performance is slightly worse on
the AR-database but seem to be better on the YaleB-database. However it has one big advantage
over the `1-minimisation scheme, which is its low computational complexity. Not taking the calcu-
lation of the feature matrices into account, as this is part of the pre-processing, basically all that
has to be done to classify a new data vector is to multiply it with the feature matrix and calculate
some statistics on the resulting vector. The `1 minimisation method on the other hand requires on
top of extracting the features the solution of a convex optimisation problem

min ‖z‖1 s.t. ‖fnew − Fz‖2 ≤ ε, (19)

where F in this case is the df × N matrix containing the features of all the training data. For
comparison in [20] the authors state that the classification of one image takes a few seconds on a
typical 3 GHz Pc. At the same time for classifying 1205 images of size 192×168, using our method
with 4 feature dimensions per class, MATLAB takes less than half a minute on a Dual 1.8Ghz
PowerPC G5, which is less than 25ms per image.

5 Discussion

We have presented a classification scheme based on a model of incoherent subspaces, each one
associated to one class, and a model on how the elements in a class are represented in this subspace.
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Figure 2: Images of two subjects, original (a) & (d), projected onto the span of features from their
own class (b) & (e), projected onto the span of features of the wrong class (c) & (f)

- note different scales!!

From a more practical viewpoint we have developed an algorithm to calculate these subspaces, i.e.
the feature matrices, and shown that the scheme gives promising results on the AR database and
in the best case even outperforms a state of the art method like the `1-minimisation scheme in [20]
on the YaleB-database. However, of the drawbacks of the scheme so far is that we did not specify
how to choose the parameter µ (the parameter β in the end was always set to 1). To apply it to
a concrete problem it would therefore be necessary to split your training data again into a set for
training and one for tuning the parameter µ.
The idea that each class should have its own representative system, learned from the training data
can already be found in [17]. There frames or dictionaries for texture classification are learned,
such that each provides a sparse representation for its texture class. The new texture then gets
the label of the texture frame providing the sparsest representation. In [12], the same basic idea is
used but the learning is guided by the principle that the dictionaries should also be discriminant,
while in [16] both learning principles are combined, i.e. the dictionaries should be discriminant
and approximative. This third scheme can be considered as a more general and more complicated
version of our approach. Alternatively our approach can be considered to be a hybrid of Nearest
Subspace respectively Nearest Neighbour and the discriminative and approximative frame scheme,
in so far as it is linear but has individual features for every class.
The idea to use a collection of subspaces for data analysis can also be found in [11], where the
subspaces are used to model homogenous subsets of high-dimensional data which together can
capture the heterogenous structures.
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For the future there remain some interesting directions to explore. Firstly the possibilities of the
subspace classification approach do not seem exhausted using the proposed algorithm. Ironically
this fact revealed itself through a bug in the minimisation procedure, resulting in matrix pairs with
distances larger than the optimal ones, and sensing matrices giving better classification results, i.e.
in the best case an error of only 35 misclassified images. The main difference of these fake optimal
matrices to the sensing matrices corresponding to the actual minima, seemed to be that, while
capturing approximately the same ’energy’ within class, they were more accurate in respecting
the without class energy bound, i.e. less overshooting of the maximally allowed value µ. This
overshooting for the real minima is a result of imposing not only ‖Fiykj ‖2 ≤ µ but also ‖Fiyki ‖2 = β,
which forces the optimal feature matrix to balance the error incurred by not attaining β within
class and the error incurred by being larger than µ without class. A promising idea to avoid the
overshooting would be to change the problem formulation and ask to maximise the ’energy’ within
class subject to keeping the ’energy’ without class small, i.e. in the case p = 2 solve,

max
∑

i

‖F ?i Yi‖22

s.t. F ?i Fi = Is and

‖Fixkj ‖2 ≤ µ, ∀k, j 6= i.

Lastly our approach allows to impose additional constraints on F , like incoherence of the subspaces
between each other, e.g. ‖F ?i Fj‖2,2 ≤ ν for p = 2, different sizes of the subspaces but with appro-
priate weighting, or low rank of the whole feature matrix to reduce the cost of calculating F ?ynew.
Also one could think of replacing the orthogonality constraint with an incoherence constraint of
the form 〈f ji , fki 〉 < ν for j 6= k, which could be beneficial when using the ∞ or 1-norm or more
exotic norms, but would led to a quite large increase of complexity of the scheme. Finally there
is the possibility to reduce computational cost if d and N are very large, especially in the training
step. A promising and computationally efficient strategy would be to first take random samples of
the training data, which reduce their dimension but very likely preserve the geometrical structure,
as described in [2] and used in [20]. Alternatively to reduce the dimension of F one can apply our
scheme on classical features, like Eigen or Laplace features, instead of directly on the raw training
data.

A Solution Sketches for the Minimisation Problems

In order to use the alternate projection method for calculating the feature matrices we need to find
the projection of a matrix F̂ onto Fs and onto Fµ in the three cases p = 1, 2,∞. We will start with
the easier of the two problems

find: Fs ∈ argmin
F∈Fs

‖F − F̂‖2. (20)

Since the minimisation problem is invariant under squaring of the objective function and thus
equivalent to

min
F∈Fs

‖F − F̂‖22 = min
F∈Fs

c∑

i=1

‖Fi − F̂i‖22, (21)

it splits into c independent problems

min
F ?i Fi=Is

‖Fi − F̂i‖22. (22)
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The solution of these problems is straightforward. If F̂i has the reduced singular value decomposi-
tion F̂i = UiSiVi then the orthonormal system Fi of same rank closest to it is Fi = UiVi, see e.g.
[8].
The second minimisation problem

find: Fµ ∈ argmin
F∈Fµ

‖F − F̂‖2.

is more complicated to solve. Assume that the number of training signals is larger than the
dimension of the signals and span the whole space, so that the d × N matrix Y has rank d ≤ N .
If not we embed the training signals into a lower dimensional space corresponding to the rank of
Y via a reduced QR-decomposition of Y and set Ỹ = Q?Y = R before starting the alternating
projection procedure. Afterwards we set F = Q?F̃ , where F̃ is the feature matrix calculated from
the lower dimensional embedded data. Since Y has rank d we have Y Y † = Id and can reformulate
the problem to solve as

min
F∈Fµ

‖F − F̂‖2 = min
F∈Fµ

‖(F ?Y − F̂ ?Y )Y †‖2. (23)

The advantage of this formulation is that it is in terms of F ?Y , which is also used to describe Fµ.
To further exploit this property we define the set Gµ, which is of the form F ?Y with F ∈ Fµ. To
characterise the set Gµ we assume the following notation. Let Gij refer to the s × nj submatrix
that corresponds to F ?i Yj inside F ?Y and denote the k-th column of Gij by Gij(:, k). We can then
define

Gµ := {G : ‖Gii(:, k)‖p = βp,

‖Gij(:, k)‖p ≤ µp, ∀k, i, j 6= i}. (24)

Set Ĝ = F̂ ?Y then the problem in (23) is equivalent to

min
G∈Gµ

‖(G− Ĝ)Y †‖2. (25)

To attack this problem we will use resolvents or proximity operators which are a generalisation of
projection operators. Given a Hilbertspace H and a function f from H to ]−∞,+∞] that is lower
semicontinuous, convex and not identical to +∞, i.e. belonging to Γ0(H) the proximity operator
proxf is defined by

proxf (x) = argmin
H

f(y) +
1

2
‖x− y‖2H.

Proximity operators were first studied by Moreau in [14], who developed a theory of proximal
calculus, and recently have been used to solve optimisation problems in signal processing, [4]. Here
we will use the forward backward splitting approach as described in [5]. Assume that we can write
the function to minimise as the sum of two functions f1, f2 in Γ0(H), i.e.

min
x∈H

f1(x) + f2(x). (26)

If f2 is differentiable with a β-Lipschitz continuous gradient for β > 0 then the sequence generated
by fixing x0 ∈ H and iterating

xn+1 = proxγnf1(xn − γn∇f2(xn)) (27)
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converges weakly to a minimum of (26) if γ < 2/β.
To apply the concept to our problem we take as Hilbert space the set of all c · s × N matrices G
equipped with the Frobenius norm and define the indicator function IGµ of the set Gµ by

IGµ(G) :=

{
1 if G ∈ Gµ

+∞ else
.

The we can replace problem (25) by

min
G

IGµ(G) + ‖(G− Ĝ)Y †‖22. (28)

The slight imperfection of this approach is that the set Gµ is not convex, therefore IGµ(G) is not
convex and the sequence generated applying (27) is not guaranteed to converge. Finding only a
local minimum is however not such a big problem, since the procedure is only part of a bigger
iterative scheme, as long as in each step we get some improvement.
What remains to be done is to calculate the proximity operators for γf1 = γIGµ = IGµ , the

gradient of f2(G) = ‖(G − Ĝ)Y †‖22 and decide about the initialisation G0 and the step sizes γn.
A straightforward calculation shows that ∇f2(G) = 2(G − Ĝ)Y †(Y †)?. Since IGµ is an indicator
function the proximity operator is simply the orthogonal projection onto Gµ, i.e.

argmin
G

IGµ(G) +
1

2
‖Gn −G‖22 = argmin

G∈Gµ
‖Gn −G‖22

Because of the structure of Gµ, see (24), the problem above splits into the smaller problems

min
‖Gii(:,k)‖p=βp

‖Gnii(:, k)−Gii(:, k)‖22, ∀i

and min
‖Gij(:,k)‖p≤µp

‖Gnij(:, k)−Gij(:, k)‖22, ∀i 6= j.

In other words for p = 1, 2, ∞ we need to solve problems of the form

min
‖g‖p=βp

‖g − h‖22 and min
‖g‖p≤µp

‖g − h‖22. (29)

The solutions are collected in the following Theorem.

Theorem 1 Denote by gβp the minimal argument of the first problem and by gµp the minimal
argument of the second problem in (29).
p = 1 : Set σ(i) = sign(h(i)) if h(i) 6= 0 and σ(i) = 1 else, and denote by m the length of the h,
then

gβ1(i) = h(i) + σ(i)λ, where λ =
β − ‖h‖1

m
.

If ‖h‖1 ≤ µ set gµ1 = h. Otherwise set g0 = h and iteratively shrink

gkβ1(i) = σ(i) max(|gk−1(i)| − λk, 0),

where λk =
‖gk−1‖1 − µ
]{gk−1i 6= 0}

.
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until gk with ‖gk‖1 = µ is found and set gµ1 = gk.
p = 2 :

gβ2 = β2 ·
h

‖h‖2
,

gµ2 =

{
h if ‖h‖2 ≤ µ2

µ2 · h
‖h‖2 else

.

p =∞ : Let imax be the index of (one of) the largest absolute component of h then

gβ∞(i) =

{
1 if i = imax

h(i) else
,

gµ∞(i) =

{
h(i) if |h(i)| ≤ µ∞
µ∞ else

.

Lastly as initialisation G0 we choose the projection of Ĝ onto Gµ, i.e. G0 = proxf1(Ĝ). Finding
the correct step-sizes is usually a matter or trial and error. For the application considered here
we used γn = ‖Gn‖2/(20‖∇f2(Gn)‖2), which worked better for small µ, and γn = 1/‖∇f2(Gn)‖2,
which worked better for large µ. The iteration was stopped when the relative improvement in each
step was below 10−4. The number of iterations for the alternative projections was set to 10.

Thanks: We would like to thank John Wright for helping us getting the cropped version of the
AR-database faces.
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An open letter concerning

Explanation of low Hurst exponent for Riemann zeta

zeros

O. Shanker

In 2006 a striking result was published (Generalised Zeta Functions and Self-Similarity of Zero
Distributions, J. Phys. A 39(2006), 13983-13997) about the statistics of the zeros of the Riemann
zeta function. The paper (by the current author) applied rescaled range analysis, and found that
the zeros exhibited an unusably low Hurst Exponent. While that paper discussed some possible
explanations, no clear reason for the low Hurst Exponent emerged. This was particularly interesting
because the most obvious explanation, that the differences of the zeros have a very large anti-
correlation, would be very unusual indeed.

Recently the author came up with empirical evidence for another less radical explanation,
and submitted the explanation for publication, and it was rejected. The main reason for the
rejection appears to be the limited content. While the content is empirical and limited to a single
point, the author nevertheless feels that the result should be published, not as an important new
result, but because it provides a plausible explanation for the original findings. The referee also
commented that the author did not mention that the distribution of the fluctuating part of the zero
counting function has been known to be Gaussian distributed, and did not explain what the Hurst
exponent was. The author agrees that the paper may benefit by having more detail and references.
However, the original article had detailed references and discussion about the literature concerning
the distribution of the zeros of the Riemann zeta function, so the reader may rely on the original
paper for details and references. The author is not aware of any errors in the paper, and has not
made any changes in the paper.

The referee also mentioned that there may be many distributions other than the Gaussian that
would produce the same results. The author agrees: the key point of the paper is that the rescaled
range analysis does not necessarily imply a long-range anti-correlation in the differences of the
zeros, and to give an indication of other possible, less radical explanations.
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Explanation of low Hurst exponent for Riemann zeta zeros

O. Shanker ∗

Abstract

We discuss a possible explanation for the low Hurst exponent extracted from a rescaled range
analysis of the large height Riemann zeta function zeros.

Physicists have studied the zeros of the Riemann zeta function because of its relation to the
spectra of random matrix theories (RMT) [1, 2, 3, 4] and the spectra of classically chaotic quantum
systems [5, 6, 7, 8]. A rescaled range analysis of the large height Riemann zeta zeros leads to a
very low Hurst exponent (∼ 0.1) over several orders of magnitude variation (from 107 to 1022) in
the heights of the zeros [9]. So far there has been no explanation for this behaviour. One possible
explanation is that the zeros represent a long range anti-correlation. However, one has to be careful
in coming to that conclusion, since such a large anti-correlation is rather special [10]. In this work
we argue that the low Hurst exponent is not due to an anti-correlation, but can be explained by
superposing a random Gaussian correction term to Riemann’s approximation for the variation of
the number of zeros with height.

We first briefly set up the notation. The Riemann Zeta function is defined for Re(s) > 1 by

ζ(s) =
∞∑

n=1

n−s =
∏

p

(
1− p−s)−1 . (1)

ζ(s) has a continuation to the complex plane and satisfies a functional equation

ξ(s) := π−s/2 Γ(s/2) ζ(s) = ξ(1− s); (2)

ξ(s) is entire except for simple poles at s = 0 and 1. We write the zeroes of ξ(s) as 1/2 + iγ. The
Riemann Hypothesis [11, 12, 13, 14] asserts that γ is real for the non-trivial zeroes. We order the
γs in increasing order, with

. . . . . . γ−1 < 0 < γ1 ≤ γ2 . . . . (3)

Then γj = −γ−j for j = 1, 2, . . . , and γ1, γ2, . . . are roughly 14.1347, 21.0220, . . .. The Hurst
exponent is extracted by applying rescaled range analysis to the distribution of the spacings [9]
δj = γj+1 − γj .

From Riemann’s time it is known that the mean number of zeros with height less than γ (the
smoothed Riemann zeta staircase) is approximately [14, 6]

< NR(γ) >= (γ/2π)(ln(γ/2π)− 1) +
7

8
. (4)

Thus, the mean spacing of the zeros at height γ is 2π(ln(γ/2π))−1. Eqn. 4 can be inverted to give
an approximation γa,i for the ith zero of the Riemann zeta function, if we set < NR >= i. Let us
write the ith zero γi as

γi = γa,i +Xi, (5)

∗O. Shanker is with Hewlett-Packard (oshanker@gmail.com)
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Table 1: Hurst Exponent for Riemann zeroes and for the values from Eqn. 5 with two different seed
values for the random number generator. The sample size is 10000 and the standard deviation for
Xi in Eqn. 5 is 0.25

Range of zeroes Riemann Eqn. 5 Eqn. 5
zeros seed A seed B

104 < j ≤ 2 ∗ 104 0.51 0.51 0.51
105 < j ≤ 105 + 104 0.21 0.21 0.20
106 < j ≤ 106 + 104 0.10 0.13 0.11
1012 < j ≤ 1012 + 104 0.12 0.12 0.11
1022 < j ≤ 1022 + 104 0.12 0.12 0.11

where Xi is a correction term. We show that the observed behaviour of the rescaled range analysis
is reproduced even if there is no anti-correlation between the Riemann zeta zeros, all that is needed
is to assume that the correction term Xi is distributed normally. With this assumption, Table 1
shows the Hurst exponent extracted from the Riemann zeta zeros, and for comparision the Hurst
exponent for the sequence given by Eqn. 5 with Xi distributed normally. We ran the analysis using
two different seed values for the random number generator. The standard deviation of the normal
distribution was taken to be 0.25 . We see from the table that Eqn. 5 reproduces the observed
behaviour of the Riemann zeros fairly well. It is also not too sensitive to the assumed seed value
used to generate the Gaussian term Xi in Eqn. 5. Finally, it reproduces the observed low Hurst
exponent for the large height zeros, since for these zeros the first term in Eqn. 5 becomes essentially
linear, and the Hurst exponent is then determined by the normal term, independent of the height.
Thus, it appears that the observed low value for the large height Riemann zeta zeros is not due to
an anti-correlation, but instead it is due to the fact that for these zeros the dependence on height
is essentially linear, with a normal correction term superposed on the linear variation.

Figure 1 shows the rescaled range analysis for the zeros in the range 100000 . . . 110000. The
horizontal axis is the log of the bin size used for the rescaled range analysis, and the vertical axis is
the log of the mean rescaled range for the given values of bin size. The low slope at the low values
of the bin size is due to the Xi term in Eqn. 5, and the increase in slope at higher bin sizes is due
to the γa,i term in Eqn. 5. Eqn. 5 gives a fairly good representation of the rescaled range behaviour
of the actual Riemann zeta zeros.

In conclusion, we have presented evidence that the remarkable behaviour of the Riemann zeta
zeros under rescaled range analysis can be explained by Riemann’s approximation for the variation
of the number of zeros with height coupled with a random Gaussian correction term.
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Figure 1: Rescaled range analysis for the zeros in the range 100000 . . . 110000. The y axis is the
log of the rescaled range and the x axis is the log of the bin size. Squares represent the values for
the Riemann zeros and circles represent the values for the sequence in Eqn. 5
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An open letter concerning

On the distribution of Carmichael numbers

Aran Nayebi

In my paper, entitled “On the distribution of Carmichael numbers”, I investigate the distribution
of Carmichael numbers. The importance of Carmichael numbers is that they test the limits of
Fermat’s primality test, which ultimately led mathematicians to formulate more effective primality
tests in the twentieth century. There have been two important conjectures regarding the distribution
of these numbers up to sufficiently large bounds, one made by Paul Erdős in 1956 and a subsequent
sharpening of this conjecture by Carl Pomerance in 1981. However, neither of these conjectures
are well-supported by the Carmichael number counts famously performed by Richard Pinch up to
1021. The inaccuracies of these two aforementioned conjectures are understandable, since not too
much is known about Carmichael numbers. In fact, after a century of investigation regarding these
numbers, it was only a decade ago that the infinitude of Carmichael numbers was proven! In this
paper, I present two conjectures (which sharpen Erdős’ and Pomerance’s conjectures) regarding
the distribution of Carmichael numbers that fit proven bounds, are roughly supported by Pinch’s
data (as well as data from other papers and resources), that closely model the true distribution of
Carmichael numbers, and are supported by many theorems and conjectures put forth by renowned
mathematicians such as Alford, Erdős, Galway, Granville, Harman, Pomerance, Wagstaff, Selfridge,
and Szymiczek. The reader may wonder why two conjectures are presented. The reason is that due
to the lack of information regarding Carmichael numbers and their distribution, both conjectures
are viable to their own merit.

Unfortunately, although I feel that the results in this paper are important and would satisfy
the interests of the mathematical community, the paper was rejected by three journals.

The first journal the paper was submitted to was Mathematics of Computation. The referee
stated that “the paper deals with interesting topics and might be generally appropriate for Math.
Comp. However, the paper is written very poorly and it needs a lot of work before it can be
properly considered.” Thus, I humbly took the advice of the referee, and I spent the better part of
two months revising the paper rigorously with a colleague of mine. I made the paper more readable,
the notation more recognizable, and I added six data tables from various cited sources (some of the
data I collected myself), all in support of my conjecture. Similarly, through this revision process,
we disproved many of my conjectures and theorems, and we sharpened and strengthened many
of my proofs. However, the only conjecture that we were unable to disprove was my conjecture
regarding Carmichael numbers. Furthermore, I discussed my paper with several mathematicians
who are known for their work on Carmichael numbers and pseudoprimes (which are a superset of
Carmichael numbers), all of whom agreed with the majority of my ideas. I also requested feedback
from a mathematician who had not published any papers in this field, who stated: “I read through
your paper on pseudoprimes, and while the subject is not my area of expertise, it is clear that you
are familiar with the mathematical literature and are making a serious contribution.”
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After revising the paper thoroughly, I then submitted the paper to The American Mathematical
Monthly. Although they were unable to find any mistakes (both mathematical and style-wise) and
this time the paper received a good editorial review, the paper was rejected because “the Monthly
tries to publish expositions of mathematics that are accessible to a broad mathematical audience.
The material in your paper is rather technical, and we feel that many Monthly readers will find it
forbidding. We will therefore not be able to accept it for publication. These are difficult decisions.
The Monthly receives a large number of submissions each year, and we are able to publish only a
small fraction of them.”

I could not help but be amused by this rejection notice; however, I was somewhat flustered.
Carmichael numbers are important in number theory because of their rarity (there are only 20138200
Carmichael numbers up to 1021), and their existence demonstrates the ineffectiveness of the Fermat
primality test. Furthermore, the fact that not too much is known about these numbers after almost
a century of research, means that more work about them should be considered for inclusion within
mathematical literature. Also, my paper is not forbidding as there are tables which present my
assertions in non-verbiage form and these tables are even explained in detail. The notation is also
entirely readable and widely-recognized.

As a final straw, I sent the paper to Carl Pomerance, in the hopes of a more extensive and
in-depth peer review. At the time, Conjecture 1.0.4 (the second conjecture) had not been included
in the manuscript; only Corollary 1.0.3 (the first conjecture) was presented as the main result.
Although my correspondence with him was brief (parts of which I include in my paper), his advice
was helpful. Pomerance’s arguments in support of his conjecture compelled me to propose a second
conjecture that was a refinement to his original 1981 one, mainly by utilizing finer estimates for
the distribution of smooth numbers (a practice which he stated had not yet been done before).
This conjecture, which later became Conjecture 1.0.4, gave extremely accurate counts for C(x), the
number of Carmichael numbers up to x, at least for smaller bounds (although asymptotically it is
the same result as Pomerance’s).

With these adjustments made, I submitted my manuscript to Experimental Mathematics as it
is “a journal devoted to the experimental aspects of mathematics research.” Unfortunately, two
months later, they rejected the submission on the grounds that “the two conjectures presented by
the author can each be substantially simplified by using known (or easily derived) asymptotics for
the constituent parts....The first conjecture is extremely unlikely to be true, if only for the reason
that it postulates an asymptotic formula for the number of Carmichael numbers up to x, while no
other conjecture makes such a strong statement....Also, in the second conjecture, the author claims
to be including more explicit secondary terms, but the (1+o(1)) factor just washes them out anyway.
In short, the statements would need to be substantially simplified and polished to make this paper
worth publishing in a strong journal such as EM.” I agree with the referee that the statements
would have to be simplified; a task which I had completed prior to submission, even going so far as
to provide numerical estimates for the various constants used in the statement of Corollary 1.0.2.
However, my points of contention with the referee are that the first conjecture cannot simply be
disregarded as untrue due to the strength of its assertions (and in fact the numerical evidence
compiled in my paper demonstrates its viability) and that the second conjecture must include
secondary terms in it so that the discrepancies pointed out by Pinch will not occur.

If anything, the second conjecture appears to be more plausible than the first; however, both
conjectures provide different and intriguing insights into the distribution of Carmichael numbers.
The first conjecture asserts that an asymptotic formula for C(x) easily follows based on the com-
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putation of numerical constants. The second conjecture indicates to us that if secondary terms
exist, then the properties of smooth number counting functions must be examined further in order
to effectively prove an equality for C(x).

Frankly, submitting the paper to another peer-reviewed journal and waiting a few months to a
year for a referee look over a paper which has already been examined by several mathematicians
of the same expertise (if not more) is a waste of time. I have submitted my paper to Rejecta
Mathematica in the hopes of advancing mathematics and the investigation of pseudoprimes and
their variants.
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On the distribution of Carmichael numbers

Aran Nayebi∗

Abstract

Erdős conjectured in 1956 that there are x1−o(1) Carmichael numbers up to x. Pomerance

made this conjecture more precise and proposed that there are x1−
{1+o(1)} log log log x

log log x Carmichael
numbers up to x. At the time, his data tables up to 25 · 109 appeared to support his conjec-
ture. However, Pinch extended this data and showed that up to 1021, Pomerance’s conjecture
did not appear well-supported. Thus, the purpose of this paper is two-fold. First, we build
upon the work of Pomerance and others to present an alternate conjecture regarding the distri-
bution of Carmichael numbers that fits proven bounds and is better supported by Pinch’s new
data. Second, we provide another conjecture concerning the distribution of Carmichael numbers
that sharpens Pomerance’s heuristic arguments. We also extend and update counts pertain-
ing to pseudoprimes and Carmichael numbers, and discuss the distribution of One-Parameter
Quadratic-Base Test pseudoprimes.

1 Introduction

Fermat’s “little” theorem states that if b is an integer prime to n, and if n is prime, then

bn ≡ b (mod n). (1.0.1)

When gcd(b, n) = 1, we can divide by b,

bn−1 ≡ 1 (mod n). (1.0.2)

A composite natural number n for which bn−1 ≡ 1 (mod n) for any fixed integer b ≥ 2 is a base
b pseudoprime. A positive composite integer n is a Carmichael number if bn−1 ≡ 1 (mod n) for
all integers b ≥ 2 with gcd(b, n) = 1. The importance of Carmichael numbers is that they test
the limits of the Fermat primality test, which ultimately led mathematicians to formulate more
effective tests. Furthermore, there is little that is known about them; for instance, the infinitude
of Carmichael numbers has only recently been proven by Alford, Granville, and Pomerance [3].

Let Pb(x) denote the number of base b pseudoprimes ≤ x and let C(x) denote the number
of Carmichael numbers ≤ x. In 1899, Korselt [4] provided a method for identifying Carmichael
numbers

Theorem 1.0.1. An odd number n is a Carmichael number iff n is squarefree and p − 1 | n − 1
for all p | n, where p is a prime number.

As a consequence of Theorem 1.0.1, it is easy to see that Carmichael numbers have at least
three prime factors.

In 1910, Carmichael [24] found the smallest Carmichael number to be 561 = 3 · 11 · 17.
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Table 1: Counts of k-prime Carmichael numbers
Bound C3(x) C4(x) C5(x) C6(x) C7(x) C8(x) C9(x) C10(x) C11(x) C12(x) C(x)

103 1 0 0 0 0 0 0 0 0 0 1
104 7 0 0 0 0 0 0 0 0 0 7
105 12 4 0 0 0 0 0 0 0 0 16
106 23 19 1 0 0 0 0 0 0 0 43
107 47 55 3 0 0 0 0 0 0 0 105
108 84 144 27 0 0 0 0 0 0 0 255
109 172 314 146 14 0 0 0 0 0 0 646
1010 335 619 492 99 2 0 0 0 0 0 1547
1011 590 1179 1336 459 41 0 0 0 0 0 3605
1012 1000 2102 3156 1714 262 7 0 0 0 0 8241
1013 1858 3639 7082 5270 1340 89 1 0 0 0 19279
1014 3284 6042 14938 14401 5359 655 27 0 0 0 44706
1015 6083 9938 29282 36907 19210 3622 170 0 0 0 105212
1016 10816 16202 55012 86696 60150 16348 1436 23 0 0 246683
1017 19539 25758 100707 194306 172234 63635 8835 240 1 0 585355
1018 35586 40685 178063 414660 460553 223997 44993 3058 49 0 1401664
1019 65309 63343 306310 849564 1159167 720406 196391 20738 576 2 3381806
1020 120625 98253 514381 1681744 2774702 2148017 762963 114232 5804 56 8220777
1021 224763 151566 846627 3230120 6363475 6015901 2714473 547528 42764 983 20138200

Based on Korselt’s criterion, Erdős [21] formulated a method for constructing Carmichael num-
bers, which was the basis for the proof of Alford, Granville, and Pomerance [3]. His notion was to
replace “p − 1 | n − 1 for all p | n” in Theorem 1.0.1 with L | n − 1 for L := lcmp|n(p − 1). By
focusing primarily on L, Erdős found every p for which p− 1 | L and then tried to find a product
of those primes in which ≡ 1 (mod L) [2]. His results heuristically suggested that for sufficiently
large x,

C(x) = x1−o(1). (1.0.3)

More convincingly, Theorem 4 of [3] shows that (1.0.3) holds if one assumes widely-believed as-
sumptions regarding primes in arithmetic progressions. However, drawing upon available data at
the time, Shanks [12] was skeptical of (1.0.3) because the counts of Carmichael numbers seemed to
have noticeably fewer prime factors than those predicted by Erdős’ heuristic.

Granville and Pomerance [2] conjectured that the reason for the difference between the computa-
tional evidence and the argument of (1.0.3) stems from a grouping of Carmichael numbers into two
distinct classes, namely primitive and imprimitive. If we let g = g(n) := gcd(p1−1, p2−1, · · · , pk−1)
for a squarefree integer n = p1p2 · · · pk and put pai = pi−1 for some integer ai, then n is a primitive
Carmichael number if g(n) ≤ [a1, · · · , ak], and imprimitive if otherwise. Thus, since the observa-
tions of Shanks are more applicable to imprimitive Carmichael numbers and those of Erdős are
more applicable to primitive Carmichael numbers, and most Carmichael numbers are in fact prim-
itive whereas most Carmichael numbers with a fixed number of prime factors are imprimitive, then
the two conjecturers easily reached different conclusions.

Interestingly, Pinch’s counts of k-prime Carmichael numbers up to 1021 [25] reproduced in Ta-
ble 1 imply that the number of prime factors of primitive Carmichael numbers tends to increase as
x gets larger. As can be implied from Table 1, for the maximum number of distinct prime factors
k(x)� log x

log(2) x
,

C(x) = C3(x) + C4(x) + C5(x) + · · ·+ Ck(x)(x), (1.0.4)

where log(j) x denotes the j-fold iteration of the natural logarithm for j ≥ 2 (we shall use this
notation from now on). Moreover, if we allow Ck(x) to represent the number of Carmichael numbers
≤ x with precisely k ≥ 3 prime factors, then it is conjectured that

Ck(x) = Ωk(x
1/k/ logk x). (1.0.5)
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Table 2: Values of h(x)
Bound h(x)

103 2.93319
104 2.19547
105 2.07632
106 1.97946
107 1.93388
108 1.90495
109 1.87989
1010 1.86870
1011 1.86421
1012 1.86377
1013 1.86240
1014 1.86293
1015 1.86301
1016 1.86406
1017 1.86472
1018 1.86522
1019 1.86565
1020 1.86598
1021 1.86619

Returning to the Erdős-Shanks controversy, Pomerance [2] sharpened the conjecture in (1.0.3)
for all large x in order to be consistent with both Shanks’ and Erdős’ observations. Define the
function h(x) as

C(x) = x · exp
{
− h(x)

log x log(3) x

log(2) x

}
. (1.0.6)

According to Pomerance, distribution of Carmichael numbers is given by

C(x) = x
1− {1+o(1)} log(3) x

log(2) x , (1.0.7)

for x sufficiently large. Unfortunately, according to Pinch [26], there appears to be no limiting
value on h as indicated by the recent counts of Carmichael numbers up to 1021. It is obvious
that (1.0.7) holds iff limh = 1 in (1.0.6). However, Pinch [26] explains that the decrease in h is
reversed between 1013 and 1014, which is presented in Table 2. In fact, there is no clear evidence
that suggests limh = 1.

As a result, we present an alternate conjecture

Conjecture 1.0.2.

C(x) ∼ C3(x)Pb(x)

Pb,2(x)
, (1.0.8)

where Pb,2(x) is the number of two-prime base b pseudoprimes ≤ x and C3(x) is the number of
three-prime Carmichael numbers ≤ x.

From Conjecture 1.0.2, we derive a corollary that the number of Carmichael numbers up to x
sufficiently large is
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Corollary 1.0.3.

C(x) ∼ ψ′x
5
6

log x · L(x)
∼
ψ′1x

1
2 log2 x

∫ x
1
3

2

dt

log3 t

L(x)
, (1.0.9)

where L(x) = exp{ log x log(3) x

log(2) x
}, ψ′ = τ3

C , ψ′1 = τ3
27C . If we let p, q, and d be odd primes, and we

define ωa,b,c(p) as the number of distinct residues modulo p represented by a, b, c, then the constants
C and τ3 are explicitly given as such,

C = 4T
∑

s≥1

∑

r>s
gcd(r,s)=1

δ(rs)ρ(rs(r − s))
(rs)

3
2

(1.0.10)

T = 2
∏

d

1− 2/d

(1− 1/d)2
,

ρ(m) =
∏

d|m

d− 1

d− 2
,

δ(m) =





2, if 4 | m;

1, if otherwise.

τ3 = κ3λ, (1.0.11)

λ := 121.5
∏

p>3

(
1− 3/p

(1− 1/p)3

)
,

κ3 =
∑

n≥1

gcd(n, 6)

n4/3

∏

p|n
p>3

p

p− 3

∑

a<b<c, n=abc
a,b,c pairwise coprime

δ
′
(a, b, c)

∏

p-n
p>3

p− ωa,b,c(p)
p− 3

,

δ
′
(a, b, c) =





2, if a ≡ b ≡ c 6≡ 0 (mod 3);

1, if otherwise.

.

Based upon the computation of C made by Galway [29] and the evaluation of κ3 by Chick and
Davies [16], we believe that ψ′ will approach 69.51 and ψ′1 will approach 2.57; although these values
are not yet borne out by the data. We also demonstrate that Corollary 1.0.3 fits the proven upper
and lower bounds for C(x), that ψ′ and ψ′1 appear to approach constant values based upon Pinch’s
data, and we support Conjecture 1.0.2 through computational efforts.

In private communication [13], Pomerance suggests to us that the reason for h(x) not ap-
proaching its conjectural limit of 1 is that “some secondary terms may be present. So, say in my
conjecture, one replaces “log(3) x” with “log(3) x+log(4) x”. It is the same conjecture, since the two
are asymptotic...and so the Pinch phenomenon is banished”. Hence, if secondary terms do indeed
exist, then another conjecture regarding C(x) would be to sharpen the heuristic arguments in [5]
which, as a consequence, may better match the actual counts of Carmichael numbers. Since these
heuristic arguments are dependent upon the number of y-smooth numbers up to x, represented
by Ψ(x, y), with y in the vicinity of exp{(log x)

1
2 }, then it would suffice to utilize improvements

concerning the asymptotic distribution of these numbers in the aforementioned region. As a result
of these endeavors, we obtain the more precise heuristic:
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Conjecture 1.0.4. Let π(x) be the prime counting function, for x sufficiently large C(x) is

x
1− {1+o(1)} log(3) x+1

log(2) x . (1.0.12)

In Table 3, we define the function

a(x) :=

(
(log(2) x)2π((log x)log(2) x) exp{−{1 + o(1)} log(2) x log(3) x}

log x

)log x/(log(2) x)2

.

Although Conjecture 1.0.4 states the same result and is a much more simplified version of a(x),
a(x) is a slightly more precise version (for x < 10100) of the conjecture and is thus used in the table
instead of (1.0.12).

The reader may wonder why two conjectures are presented. The reason is that due to the
lack of information regarding Carmichael numbers and their distribution. Corollary 1.0.3 asserts
that if the values of ψ′ and ψ′1 can be accurately determined then an asymptotic formula for C(x)
easily follows. Conjecture 1.0.4 indicates to us that if secondary terms exist, then the relation
between the functions Ψ(x, y) and Ψ′(x, y) must be examined further (we explain this concept fully
in §3.4) to effectively prove an equality for C(x). We should note that the values of C(x) predicted
by Corollary 1.0.3 and Conjecture 1.0.4 appear to be closer to the actual values of C(x) than
Pomerance’s conjecture in (2.2.2). Moreover, at least up to 1021, it appears that Conjecture 1.0.4
is presenting more accurate values of C(x) than Corollary 1.0.3; although, this may cease to be the
case for larger bounds. In fact, (1.0.12) is asymptotically the same as (1.0.7); however, the usage
of secondary terms in the former equation provides sharper estimates for smaller bounds than does
(1.0.7).

Table 3: Comparisons between the actual and predicted Carmichael number counts

Bound C(x) 69.51x
5
6

log x·L(x)

2.57x
1
2 log2 x

∫ x
1
3

2
dt

log3 t

L(x) a(x) x
1− {1+o(1)} log(3) x

log(2) x

103 1 301.95 1092.82 3.50 94.89
104 7 594.43 2835.17 7.81 365.59
105 16 1316.29 6640.29 18.18 1485.33
106 43 3131.53 14806.24 43.43 6224.10
107 105 7826.17 32411.27 107.50 26636.80
108 255 20282.91 71150.56 274.074 115803.60
109 646 54070.80 159157.24 724.86 509769.35
1010 1547 147451.71 367012.00 1926.56 2267174.18
1011 3605 409716.38 878601.38 5245.56 10171329.99
1012 8241 1156637.85 2188667.23 14488.22 45977679.09
1013 19279 3309970.24 5664006.88 40424.93 209219668.02
1014 44706 9585268.36 15162465.67 114558.014 957710051.36
1015 105212 28049810.91 41763706.96 329251.92 4407472357.25
1016 246683 82852448.55 117743387.56 955940.22 20382638275.29
1017 585355 246785788.13 338238941.70 2796027.81 94682736406.04
1018 1401644 740679196.52 986503770.93 8260103.95 441642695710.74
1019 3381806 2238429061.23 2913197684.15 24637581.64 2067911761776.64
1020 8220777 6807841639.58 8692508977.60 74026750.39 9717200728399.57
1021 20138200 20826296835.28 26167265004.43 224193470.90 45814162191297.01
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2 Preliminaries

Before delving into the main results of this paper, we shall first present results regarding pseudo-
primes and Carmichael numbers that we will explicitly use later on in our derivations.

2.1 Pseudoprimes

Currently, the tightest bounds for pseudoprime distribution have been proven by Pomerance [27]
[5].

Theorem 2.1.1 (R. A. Mollin 1989, Pomerance 1981). For the base 2 pseudoprime counting func-

tion, exp{(log x)
85
207 } ≤ P2(x) ≤ x · L(x)

−1
2 , where L(x) = exp{ log x log(3) x

log(2) x
}. These bounds are

applicable to Pb(x) for x ≥ x0(b).

Theorem 2.1.2 (Pomerance 1981). If we allow l2(n) to denote the exponent with multiplicative
order of 2 modulo n, then n is a pseudoprime (base 2) iff l2(n) | n− 1.

Conjecture 2.1.3 (Pomerance 1981). The number of solutions w for all n and x sufficiently large
is,

#{w ≤ x : l2(w) = n} ≤ x · L(x)−1+θ(x), lim
x→∞

θ(x) = 0. (2.1.1)

As a result, the number of base b pseudoprimes for sufficiently large x ≥ x0(b) is conjectured to be,

Pb(x) ∼ x · L(x)−1. (2.1.2)

Galway [29] has recently conjectured a formula for the distribution of pseudoprimes with two
distinct prime factors, p and q, based on a longstanding conjecture of Hardy and Wright concerning
the density of prime pairs. He noticed that a majority of these pseudoprimes satisfy the relation
p−1
q−1 = r

s , where r and s are small coprime integers. Thus, we heuristically have

Conjecture 2.1.4 (Galway 2004). Allow p, q, and d be odd primes, allow Pb,2(x) to represent the
counting function for odd pseudoprimes with two distinct prime factors, and Pb,2(x) := #{n ≤ x :
n = pq, p < q,Pb(n)}. Hence, as x→∞,

Pb,2(x) ∼ Cx
1
2

log2 x
, (2.1.3)

where

C = 4T
∑

s≥1

∑

r>s
gcd(r,s)=1

δ(rs)ρ(rs(r − s))
(rs)

3
2

≈ 30.03, (2.1.4)

T = 2
∏

d

1− 2/d

(1− 1/d)2
≈ 1.32, (2.1.5)

ρ(m) =
∏

d|m

d− 1

d− 2
, (2.1.6)

δ(m) =





2, if 4 | m;

1, if otherwise.

(2.1.7)
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Table 4: Values of C
Bound Pb,2(x) C

103 0 0
104 11 9.331
105 34 14.251
106 107 20.423
107 311 25.550
108 880 29.860
109 2455 33.340
1010 6501 34.468
1011 17207 34.908
1012 46080 35.181
1013 123877 35.100
1014 334567 34.767
1015 915443 34.534
1016 2520503 34.210
1017 7002043 33.928

Galway’s conjecture is somewhat supported by Table 4 for it appears that C is slowly approach-
ing its predicted constant value of 30.03:

Let ω(n) represent the number of different prime factors of n. Also, given an integer sequence
{mi}∞i=1, note that a prime p is said to be a primitive prime factor of mi if p divides mi but does
not divide any mj for j < i.

Lemma 2.1.5 (Erdős 1949). Let n be a base 2 pseudoprime. For every k, there exist infinitely
many squarefree base 2 pseudoprimes with ω(n) = k [20].

Theorem 2.1.6. There exist infinitely many squarefree base b pseudoprimes n for any b ≥ 2 with
ω(n) = k distinct prime factors.

Proof. Let {nj}∞j=1 be an integer sequence of base b pseudoprimes such that each term is greater
than its preceding term, and ω(ni) = k−1, for any ni in {nj}∞j=1. Let pi be one of the primitive prime

factors of bni−1−1. Since bni−1 ≡ 1 (mod pi ·ni) and bpi−1 ≡ 1 (mod pi), pi ·ni is a pseudoprime to
base b. We observe that bpi−1 ≡ 1 (mod ni) because pi−1 ≡ 0 (mod (ni−1)). As a result, it follows
that bni−1 ≡ 1 (mod ni). Also, bnipi−1 ≡ 1 (mod pi · ni) since bnipi−1 = b(ni−1)(pi−1) · bni−1 · bpi−1.
Hence, pi · ni is squarefree and ω(pi · ni) = k. Moreover, every integer satisfying pi · ni is different
because ni is composite, pi > ni, and pi ≡ 1 (mod (ni − 1)). �

Theorem 2.1.7. For any base b pseudoprime, b ≥ 2, having k ≥ 2 distinct prime factors and for
x sufficiently large,

Pb,k+1(x) ≥Pb,k(logb x). (2.1.8)

Proof. Let n be a pseudoprime with k > 1 distinct prime factors. Since n − 1 is the smallest
exponent ε such that p | bε − 1 and ε divides an exponent h such that p | bh − 1, it follows from
Fermat’s little theorem that p | bp−1 − 1. Thus, from Zsigmondy’s theorem, there exists a prime
p > n for which p | bn−1 − 1 and n− 1 | p− 1 for b ≥ 2. As a result,

np | bn−1 − 1. (2.1.9)
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On the other hand, since np−1 = n(p−1)+n−1 and n−1 | p−1, n−1 | np−1 and np | bnp−1−1.
If we let n,m ∈ N∗, the set of positive natural numbers, such that n 6= m and p > n, q > m, then
np 6= mq for primes p and q. However, suppose we let np = mq and p > n, then m | p. Hence,
m ≥ p and m > n. Unfortunately, the latter statement is contradictory, and as a result np 6= mq.
If n and m are two different base b pseudoprimes with k ≥ 2 distinct prime factors, then np and
mq are distinct pseudoprimes as well.

From (2.1.9),

p | (bn−1
2 − 1)(b

n−1
2 + 1), (2.1.10)

and
p ≤ bn−1

2 + 1 < b
n
2 . (2.1.11)

If n ≤ logb x, then pn < x
1
2 logb x < x. It then follows that for every base b pseudoprime n with k

distinct prime factors, n = p1p2 · · · pk ≤ logb x, there is at least one base b pseudoprime such that
p1p2 · · · pkp < x. �

2.2 Carmichael Numbers

Improving upon Erdős’ results in [21], Pomerance [5] sharpened the upper bound on C(x).

Theorem 2.2.1 (Pomerance 1981).

C(x) ≤ x · exp
{
− log x

log(2) x


log(3) x+ log(4) x+

log(4) x− 1

log(3) x
+O



(

log(4) x

log(3) x

)2




}
. (2.2.1)

In the other direction, Alford, Granville, and Pomerance proved a lower bound for C(x) for x
sufficiently large [3].

Theorem 2.2.2 (Alford-Granville-Pomerance 1994).

C(x) > x
2
7 , (2.2.2)

thus there are infinitely many Carmichael numbers.

Recently, Harman improved this lower bound [15].

Theorem 2.2.3 (Harman 2005).
C(x) > x0.33336704, (2.2.3)

It is not yet even known if C(x) > x
1
2 .

We provide in Table 5 a computation of the exponent β for which C(x) = xβ for a sufficient
value of x up to 1021.

Conjecture 2.2.4 (Granville-Pomerance 2001). If we let C3(x) be the counting function for
Carmichael numbers with 3 distinct prime factors, then

C3(x) ∼ τ3
x

1
3

log3 x
∼ τ3

27

∫ x
1
3

2

dt

log3 t
, (2.2.4)

where
τ3 = κ3λ ≈ 2100, (2.2.5)
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Table 5: Values of β
Bound 103 104 105 106 107 108 109 1010

C(x) 1 7 16 43 105 255 646 1547

β 0 0.21127 0.24082 0.27224 0.28874 0.30082 0.31225 0.31895

Bound 1011 1012 1013 1014 1015 1016

C(x) 3605 8241 19279 44706 105212 246683

β 0.32336 0.32633 0.32962 0.33217 0.33480 0.33700

Bound 1017 1018 1019 1020 1021

C(x) 585355 1401644 3381806 8220777 20138200

β 0.33926 0.34148 0.34364 0.34575 0.34781

λ := 121.5
∏

p>3

(
1− 3/p

(1− 1/p)3

)
≈ 77.1727, (2.2.6)

κ3 =
∑

n≥1

gcd(n, 6)

n4/3

∏

p|n
p>3

p

p− 3

∑

a<b<c, n=abc
a,b,c pairwise coprime

δ
′
(a, b, c)

∏

p-n
p>3

p− ωa,b,c(p)
p− 3

, (2.2.7)

δ
′
(a, b, c) =





2, if a ≡ b ≡ c 6≡ 0 (mod 3);

1, if otherwise.

, (2.2.8)

and ωa,b,c(p) is the number of distinct residues modulo p represented by a, b, c.

Recent provisional estimates by Chick and Davies [16] of the slowly converging infinite series
κ3 suggest that κ3 = 27.05 which gives τ3 = 2087.5.

3 On the Distribution of Carmichael Numbers

3.1 Two Conjectures Regarding k-prime Pseudoprimes and k-prime Carmichael
numbers

We conjecture the following relations:

Conjecture 3.1.1. For any fixed k ≥ 2, let Pb,k(x) denote the counting function for base b
pseudoprimes with k distinct prime factors, and let Pb(x) denote the counting function for base b
pseudoprimes. Asymptotically,

Pb,k(x)

Pb(x)
= o(1). (3.1.1)

In other terms, for any fixed base b > 1, the k-prime base b pseudoprimes, Pb,k(x), form a set of
relative density 0 in the set of all base b pseudoprimes, Pb(x), for that same value of b.

We are only able to partially support Conjecture 3.1.1. First, we express the ratio
Pb,k(x)
Pb(x) as,

Pb,k(x)

Pb(x)
=

Pb,k(x)
k(x)∑

i=2

Pb,i(x)

, (3.1.2)
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where the maximum number of distinct prime factors, k(x), of any integer ≤ x is k(x) � log x

log(2) x
.

Let log
(j)
b x denote the the j-fold iteration of the base b logarithm. Thus,

g(x)∑

i=2

Pb,i(x) =

k−1∑

i=2

Pb,i(x) + Pb,k(x) +

k(x)∑

i=k+1

Pb,i(x). (3.1.3)

Due to Theorem 2.1.7, for any h ≤ k in (3.1.3), Pb,k(x) ≥ Pb,h(log
(k−h)
b x), and for any w ≥ k in

(3.1.3), Pb,w(x) ≥Pb,k(log
(w−k)
b x). Hence,

k−1∑

i=2

Pb,i(x) ≤Pb,2(log
(k−2)
b x) + Pb,3(log

(k−3)
b x) + · · ·+ Pb,k−1(logb x) (3.1.4)

We cut off the terms from proceeding until log x

log(2) x
because if such were the case, then no x could

be sufficiently large to satisfy (3.1.5),

k(x)∑

i=k+1

Pb,i(x) ≥Pb,k+1(logb x) + · · ·+ Pb,r(x)(log
(r(x)−k)
b x), (3.1.5)

where r(x) is any function that grows slower than log∗ x, the iterated logarithm. We explicitly
define log∗ x as

log∗ x :=

{
0 if x ≤ 1;

1 + log∗(log x) if x > 1
. (3.1.6)

Remark 3.1.2. We should note that the support for Conjecture 3.1.1 is rather weak. This is largely
due to the weakness of Szymiczek’s construction, Pb,k+1(x) ≥Pb,k(logb x), in Theorem 2.1.7. We
believe that the latter relation can be strengthened if a polynomial decrease can be proven. In other
words, if Pb,k+1(x) ≥ Pb,k(x

c) for some c ∈ (0, 1). Similarly, in our support for Conjecture 3.1.1,
we defined the function r(x) as any function that grows slower than log∗ x, the iterated logarithm.
Although it is not hard to see that any function growing faster than log∗ x will fail, it is not obvious
whether any function growing at the same rate as log∗ x will succeed. However, we have several
reasons to strongly believe that r(x) = log∗ x. First, for practical values of x ≤ 265536 the iterated
logarithm grows much more slowly than the logarithm. Second, the iterated logarithm’s relation
to the super-logarithm also supports its slow growth. Third, higher bases give smaller iterated

logarithms, and log∗ x is well defined for any base greater than exp
{

1
e

}
. This implies that for any

base b ≥ 2, the iterated logarithm will grow even more slowly for higher pseudoprime bases.

Conjecture 3.1.3. For any fixed k ≥ 3, let Ck(x) denote the number of k-prime Carmichael
numbers up to x, and let C(x) denote the Carmichael number counting function. Asymptotically,

Ck(x)

C(x)
= o(1). (3.1.7)

3.2 Support for Conjecture 3.1.1 and Conjecture 3.1.3

So far, the claim established by Conjecture 3.1.1 is not yet borne out by the data in Table 6. We

believe that the ratio
Pb,2(x)
P2(x) will approach 0, but may do so slowly at first. On the other hand, it

appears that the ratio C3(x)
C(x) in Table 7 rapidly approaches 0, thereby supporting Conjecture 3.1.3.
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Table 6: Values of
Pb,2(x)
P2(x)

Bound Pb,2(x) P2(x)
Pb,2(x)
P2(x)

103 0 3 0.00
104 11 22 0.50
105 34 78 0.44
106 107 245 0.44
107 311 750 0.41
108 880 2057 0.43
109 2455 5597 0.44
1010 6501 14884 0.44
1011 17207 38975 0.44
1012 46080 101629 0.45
1013 123877 264239 0.47
1014 334567 687007 0.49
1015 915443 1801533 0.51
1016 2520503 4744920 0.53
1017 7002043 12604009 0.56

Furthermore, Pomerance, Selfridge, and Wagstaff’s famous results [10] support both conjectures.
In Conjecture 1 of their paper, they believe that for each ε > 0, there is an x0(ε) such that for all
x ≥ x0(ε),

C(x) > x · exp
{−{2 + ε} log x · log(3) x

log(2) x

}
. (3.2.1)

Pomerance, Selfridge, and Wagstaff [10] show that Pb,k(x) ≤ Ok(x
2k/(2k+1)). If (3.2.1) is true,

then the pseudoprimes “with exactly k prime factors form a set of relative density 0 in the set of
all [pseudoprimes]” [10]. Similarly, in Theorem 7 of Granville and Pomerance [2], it is proven that
Ck(x) ≤ x2/3+ok(1), and if (3.2.1) holds, “then for each k, Ck(x) = o(C(x))” [10].

Interestingly, we can also support the statements in Conjecture 3.1.1 and Conjecture 3.1.3 by
relating them to their composite superset. Let the number of composites ≤ x with k distinct
prime factors be denoted by πk(x) and let the number of composites ≤ x with k prime factors (not
necessarily distinct) be represented by τk(x). Hence, we can prove upper and lower bounds for
πk(x). In 22.18.2 of Hardy and Wright [14] for k ≥ 1,

k!πk(x) ≤ Πk(x) ≤ k!τk(x), (3.2.2)

where Πk(x) = ϑk(x)
log x +O( x

log x) in 22.18.5. In 22.18.24, since ϑk(x) = Πk(x) log x−
∫ x

2

Πk(x)

t
dt ∼

kx(log(2) x)k−1 for k ≥ 2 and

∫ x

2

Πk(x)

t
dt = O(x), Πk(x) ∼ kx(log(2) x)k−1

log x . As a result, it follows

that

πk(x) ≤ (1 + o(1))
x(log(2) x)k−1

(k − 1)! log x
. (3.2.3)

In the same respect, a lower bound for πk can be formulated. In 22.18.3 it is proven that,

τk(x)− πk(x) ≤
∑

p1p2···p2k−1≤x
1 ≤

∑

p1p2···pk−1≤x
1 := Πk−1(x). (3.2.4)
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Table 7: Values of C3(x)
C(x)

Bound C3(x) C(x) C3(x)
C(x)

103 1 1 1.00
104 7 7 1.00
105 12 16 0.75
106 23 43 0.53
107 47 105 0.45
108 84 255 0.33
109 172 646 0.27
1010 335 1547 0.22
1011 590 3605 0.16
1012 1000 8241 0.12
1013 1858 19279 0.096
1014 3284 44706 0.073
1015 6083 105212 0.058
1016 10816 246683 0.044
1017 19539 585355 0.033
1018 35586 1401644 0.025
1019 65309 3381806 0.019
1020 120625 8220777 0.015
1021 224763 20138200 0.011

Since πk(x) ≥ τk(x)−Πk−1(x) and πk(x) ≥ Πk(x)
k! −Πk−1(x),

πk(x) ≥ O
(
x(log(2) x)k−1

(k − 1)! log x

)
− (k − 1)x(log(2) x)k−2

log x
+O

(
x

log x

)
.

We can improve the upper bound given in (3.2.3) to an equality,

πk(x) ∼ x(log(2) x)k−1

(k − 1)! log x
. (3.2.5)

By the Erdős-Kac Theorem [22], we can formulate the probability that a number near x has k
distinct prime factors using the fact that these numbers are distributed with a mean and variance
of log(2) x. Hence, setting log(2) x as the λ of the Poisson distribution P(k;λ) and taking its limit
for any fixed k,

lim
x→∞

P(k;λ) = lim
x→∞

(log(2) x)k−1 exp{− log(2) x}
(k − 1)!

= 0, (3.2.6)

where the asymptotic error bound is given by O( 1
log(2) x

) [17]. However, we caution the reader to

consider that just because the probability of a general composite near x having k distinct prime
factors goes to 0, does not necessarily fully prove that this probability will hold for either Pb,k(x)
or Ck(x).

3.3 An Alternate Conjecture

From Conjecture 3.1.1 and Conjecture 3.1.3, it is evident that the k-prime pseudoprimes and the
k-prime Carmichael numbers are much more sparsely distributed than the set of all pseudoprimes
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and Carmichael numbers, respectively. We hypothesize that if k is minimized for both the k-prime

pseudoprimes and the k-prime Carmichael numbers, then the ratios
Pb,2(x)
Pb(x) and C3(x)

C(x) will roughly
achieve the same values for large enough x. We also recommend using the minimum number of
distinct prime factors for both the pseudoprimes and the Carmichael numbers because first, there is
no overlap between the three-prime Carmichael numbers and two-prime pseudoprimes and second,
the distinct prime factors cannot be arbitrarily chosen. This idea leads us to believe that,

C(x) ∼ C3(x)Pb(x)

Pb,2(x)
.

As a result, assuming Conjecture 2.1.3, Conjecture 2.1.4, Conjecture 2.2.4, and Conjecture 1.0.2,
the amount of Carmichael numbers ≤ x given by the counting function C(x) is conjectured to be
for x sufficiently large,

C(x) ∼ ψ′x
5
6

log x · L(x)
∼
ψ′1x

1
2 log2 x

∫ x
1
3

2

dt

log3 t

L(x)
, (3.3.1)

where
ψ′ =

τ3

C
(3.3.2)

and
ψ′1 =

τ3

27C
. (3.3.3)

In Table 8, the computed values of ψ′ and ψ′1 up to 1021 are given. Hence, not only does Corol-

Table 8: Values of ψ′ and ψ′1

Bound C(x) 69.51x
5
6

log x·L(x)

2.57x
1
2 log2 x

∫ x
1
3

2
dt

log3 t

L(x) ψ′ ψ′1
103 1 301.95 1092.82 0.2302 0.0024
104 7 594.43 2835.17 0.8185 0.0063
105 16 1316.29 6640.29 0.8449 0.0062
106 43 3131.53 14806.24 0.9545 0.0075
107 105 7826.17 32411.27 0.9326 0.0083
108 255 20282.91 71150.56 0.8739 0.0092
109 646 54070.80 159157.24 0.8305 0.0104
1010 1547 147451.71 367012.00 0.7293 0.0108
1011 3605 409716.38 878601.38 0.6116 0.0105
1012 8241 1156637.85 2188667.23 0.4953 0.0097
1013 19279 3309970.24 5664006.88 0.4049 0.0087
1014 44706 9585268.36 15162465.67 0.3242 0.0076
1015 105212 28049810.91 41763706.96 0.2607 0.0065
1016 246683 82852448.55 117743387.56 0.2070 0.0054
1017 585355 246785788.13 338238941.70 0.1649 0.0044
1018 1401644 740679196.52 986503770.93 0.1315 0.0037
1019 3381806 2238429061.23 2913197684.15 0.1050 0.0030
1020 8220777 6807841639.58 8692508977.60 0.0839 0.0024
1021 20138200 20826296835.28 26167265004.43 0.0672 0.0020
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lary 1.0.3 fit the proven bounds for C(x) given in Theorem 2.2.1 and Theorem 2.2.3, but both ψ′

and ψ′1 appear to be approaching constant values. However, there are several reasons as to why
Corollary 1.0.3 may not be necessarily borne out by the data in the above table. For instance,
the infinite series κ3 is slowly convergent, and it is not until 1024 that κ3 appears to approach its
estimated value of 2087.5. However, the primary source of inaccuracy is due to Conjecture 2.1.3.
Since Pomerance’s conjecture for the distribution of pseudoprimes is applicable for sufficiently large
x and pseudoprime counts have only recently been conducted to 1017 by Galway and Feitsma, we
are not sure how “sufficiently large” x must be for Conjecture 2.1.3 to be an accurate model for

pseudoprime distribution. Lastly, x must also be immensely large in order for
Pb,2(x)
Pb(x) = o(1).

3.4 An Improved Heuristic Argument

As mentioned before, Pomerance’s heuristic arguments supporting his conjecture in (2.2.2) involve
the distribution of smooth numbers. And, if secondary terms exist, then it would be worthwhile
to sharpen these heuristics to produce a conjecture for C(x). Let Ψ(x, y) denote the number of
y-smooth numbers ≤ x and let Ψ′(x, y) denote the number of primes p ≤ x for which p − 1 is

squarefree and its prime factors are ≤ y [10]. It is conjectured in [5] that for exp{1
2(log x)

1
2 } ≤ y ≤

exp{(log x)
1
2 },

1

x
Ψ(x, y) ∼ 1

π(x)
Ψ′(x, y). (3.4.1)

If 0 < α < 1, it is well-known [1] that

Ψ
(
x, exp{c(log x)α(log(2) x)β}

)
= x exp{−{(1− α)/c+ o(1)}(log x)1−α(log(2) x)1−β}. (3.4.2)

Concerning Carmichael numbers, we are interested in the case for which α = 1
2 , β = 0, and c = 1.

Hence,

Ψ
(
x, exp{(log x)

1
2 }
)

= x exp{−{1/2 + o(1)}(log x)
1
2 (log(2) x)}. (3.4.3)

From (3.4.1) and (3.4.3), we make the following

Conjecture 3.4.1. For exp{1
2(log x)

1
2 } ≤ y ≤ exp{(log x)

1
2 },

Ψ′(x, y) = π(x) exp{−{1/2 + o(1)}(log x)
1
2 (log(2) x)}. (3.4.4)

Let A(x) denote the product of the primes p ≤ log x/(log(2) x)2. Thus, A(x) < x2/ log(2) x as

in [10]. If we allow r1, . . . , rq to be the primes in the interval
(

log x/(log(2) x)2, (log x)log(2) x
)

with

ri − 1 | A(x). By Conjecture 3.4.1 we have for x sufficiently large,

q = π
(

(log x)log(2) x
)

exp{−{1 + o(1)} log(2) x log(3) x}. (3.4.5)

Let m1, . . . ,mN be the squarefree composite integers ≤ x composed of ri and let

l =
[
log x/(log(2) x)2

]
.

As discussed in [10], we have

N ≥
(
q
l

)
≥
(q
l

)l
. (3.4.6)
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As a result,

N ≥
(

(log(2) x)2π((log x)log(2) x) exp{−{1 + o(1)} log(2) x log(3) x}
log x

)log x/(log(2) x)2

. (3.4.7)

Since Euler’s ϕ function and Carmichael’s λ function are virtually the same, the lower bound in
(3.4.7) should be applicable to C(x). In fact, from the values of a(x) in Table 3 and the precision
of Conjecture 3.4.1, we have reason to believe that this result is asymptotically close to the actual
value of C(x).

4 One-Parameter Quadratic-Base Pseudoprimes: A Sidenote

As mentioned earlier, the discovery of Carmichael numbers demonstrated the fallability of Fermat’s
primality test therefore lending to the development of efficient probabilistic primality tests. Baillie,
Pomerance, Selfridge, and Wagstaff [10] [23] have determined a primality test that is an amalga-
mation of the Miller-Rabin test and a Lucas test. However, even though Pomerance [7] presented
a heuristic argument that the number of counter-examples up to x was � x1−ε for ε > 0, we have
not been able to find any counter-examples up to 1017. In fact, no precise probability of error has
been given about this test either [30].

Grantham [18] has also provided a probable prime test known as the RQFT that has a known
worst-case probability of error of 1/7710 per iteration.

An even stronger test known as the One-Parameter Quadratic-Base Test (OPQBT) has been
given by Zhang [30], and is a version of the Baillie-PSW test that not only has a known probability
of error but is more efficient than the RQFT except for a thin set of cases. We let u(6= ±2) ∈ Z,
let Tu = T (mod T 2 − uT + 1), and define the ring associated with parameter u as

Ru = Z[T ]/(T 2 − uT + 1) = {a+ bTu : a, b ∈ Z}.

We then define an odd integer n > 1 as an OPQBT pseudoprime for 0 ≤ u < n with

ε =

(
u2 − 4

n

)
∈ {−1, 1},

where in the ring Ru, n must pass
Tn−εu ≡ 1 (mod n). (4.0.8)

Moreover, n is defined as an OPQBT strong pseudoprime if for some i = 0, 1, · · · , k − 1, either

T uq ≡ 1 (mod n), (4.0.9)

or
T 2iq
u ≡ −1 (mod n), (4.0.10)

in which for q odd, n− ε = 2kq [30].
We have verified that there are no OPQBT pseudoprimes up to 1017. Let the counting function

O(x) denote that number of OPQBT pseudoprimes ≤ x and let S O(x) denote the number of
strong OPQBT pseudoprimes ≤ x. The best upper bound we are able to prove is

S O(x) ≤ O(x) ≤ x · L(x)
−1
2 , (4.0.11)
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since an upper bound on the pseudoprimes is applicable to an upper bound on the OPQBT pseu-
doprimes and strong OPQBT pseudoprimes.

Based upon Erdős’ construction [21] and Pomerance’s heuristics [7], in the interval
[
H,Hj

]
,

for any fixed j > 4 and H sufficiently large, there are most likely exp{H2(1 − 4/j)} counter-
examples to Zhang’s primality test, meaning that there are at least x1−4/j counter-examples below
x = exp{H2}. Thus, for arbitrary j, the number of counter-examples to the OPQBT becomes
generalized to � x1−ε for ε > 0. In other words, there are infinitely many counter-examples to
Zhang’s OPQBT.
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[21] P. Erdős, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen 4 (1956): 201–
206.
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An open letter concerning

Extended real number system in measure theory

Satish Shirali

This article was originally submitted under the title “Extended real number system”. Among
the reasons given for its rejection was that there was undue focus on methods involved, such as
consideration of separate cases, and that too little had been said about the relationship between
what the review called “the proposed system” and other number systems that include infinity.

However, no new system is being proposed in the article and the very first sentence of the second
paragraph includes the phrase “is usually defined as” in order to prevent any misinterpretation in
this regard. But evidently to no avail.

Referring to the rule that infinity times zero should be zero as the rule “you propose,” the
review agreed with my observation that this does not work out well in many situations. However,
the rule in question is quite standard in the extended real number system used for measure and
integration, and nowhere does the article suggest that all conceivable systems are being studied
under one roof.

The focus on multiplicity of cases has been argued for in the body of the article: Since multipli-
cation in extended reals is defined by separating positive reals, negative reals, zero, positive infinity
and negative infinity, verifying associativity alone requires an enormous number of dissimilar cases
to be considered. The author feels that a construction procedure for the extended reals, involving
only a manageable number of dissimilar cases—and this is what the article is mainly about, though
not exclusively—is worth having on record.

Unfortunately, this is the only issue that is emphasized in the abstract. Within the article
however, it has been pointed out that there is legitimate cause to question the consistency of a
system having the usual properties which are assumed to hold for extended reals, and furthermore,
that doubts arising on this score have been laid at rest in the rest of the discussion. The author
feels that this is another feature that makes the exposition worth placing on record.

Besides a change in the title so as to include the phrase “in Measure Theory,” there is an
amendment in the abstract that reads “For the extended reals as used in measure theory (product
0 · ∞ is 0)” in place of “As an alternative.” Also, the word “dissimilar” has been inserted.
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Extended real number system in measure theory

Satish Shirali∗

Abstract

The extended real number system is usually defined by appending two new elements and stating rules
of addition and multiplication for them. The associative and distributive laws are then supposed to be
verified case by case; however, the number of cases to be verified is well over sixty. For the extended
reals as used in measure theory (product 0 ·∞ is 0), we offer a construction through equivalence classes,
in which the number of dissimilar cases does not exceed five at any stage.

In any proof that requires consideration of separate cases, usually the number of cases is small and it is quite
clear that all of them have been taken into account. However, when the number of cases is large, it may not
be so clear that none have been left out. For example, verifying the associative law for a binary operation
described in tabular form on a set of n elements is impractical when n exceeds 4. Another such instance is
that of the associative and distributive laws in the extended real number system.

The extended real number system R̃ is usually defined as the union of R with two elements, written ∞
and −∞, and endowed with the structure described in (a)—(h) below, in addition to that already available
on its subset R:

(a) −∞ < x <∞ for every x ∈ R;
(b) x+∞ =∞+ x =∞ and x+ (−∞) = (−∞) + x = −∞ for every x ∈ R;
(c) ∞+∞ =∞ and (−∞) + (−∞) = −∞;
(d) ∞ ·∞ = (−∞) · (−∞) =∞ and (−∞) · ∞ =∞ · (−∞) = −∞;
(e) −(−∞) =∞ and −(∞) = −∞;
(f) x · ∞ =∞ · x =∞ and x · (−∞) = (−∞) · x = −∞

for every positive x ∈ R;
(g) x · (∞) = (∞) · x = −∞ and x · (−∞) = (−∞) · x =∞

for every negative x ∈ R;
(h) (±∞) · 0 = 0 · (±∞) = 0.

In contexts other than measure and integration, one may wish to omit (h) and take the products occurring
in it as “undefined”. For instance, it is omitted in [1, p.12] with the consequence on p.314 that the Lebesgue
integral of the identically zero function on R is left undefined by (53), considering that (49) requires the
function to be written as zero times the characteristic function of R. However, the same author includes (h)
in [2, p.19].

Without (e), there would seem to be no basis for the common practice of regarding x− (−∞) as meaning
x +∞ and x − (∞) as meaning x + (−∞). We have therefore chosen to state it explicitly although most
authors prefer not to.

It is immediate from the properties (a)—(h) that addition and multiplication in R̃ are commutative.
However, the associative law of addition and the distributive law, which continue to be valid under the
restriction that ∞ and −∞ do not both appear in any of the sums involved, are supposed to be verified
case by case. The associativity of multiplication can be verified, again case by case, to be valid without
restriction.
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The multiplication described by (a)—(h) is, in effect, a binary operation on a set of five elements, namely,
positive real, negative real, 0, ∞ and −∞ . In checking associativity therefore, one would have to consider
125 triplets (x, y, z); however, 27 of these involve only real numbers and need not be checked. The remaining
98 can be reduced to 68 by taking advantage of the obvious commutativity, but this is still an uncomfortably
large number of cases to handle.

Consequently, in any effort at a case-by-case verification of the associative and distributive laws in the
extended real number system, it would be a legitimate concern whether all cases have actually been taken
into account or not.

We have avoided adding the requirement that x
∞ = 0 for x ∈ R so as to keep clear of the consequence

that

0 = 0·∞ = 1
∞ · ∞ but 1·∞

∞ is undefined.

However, this observation raises a second concern, namely, whether (a)—(h) already contain a contradiction,
even without this requirement.

With a view to addressing both concerns, we outline a method of “constructing” R̃ from R, in which we
describe ∞ and −∞ set theoretically in terms of R rather than pull them out of the sky, and moreover, the
associative and distributive laws become transparent with just two cases each. The definitions of addition
and multiplication in R̃ undoubtedly call for separate cases to be considered, but it is transparent that none
are left out.

We begin by describing what the objects ∞ and −∞ are.
Let ∞ denote the class of real sequences “diverging to ∞” in the usual sense (no circularity involved in

this) and −∞ denote the obvious analogous class. Furthermore, for each x ∈ R, let [[x]] denote the class
consisting of a single sequence, namely, the constant sequence with each term equal to x. Set [[R]] = {[[x]] :
x ∈ R} and R̃ = [[R]]∪{−∞,∞}. Then each element of R̃ is a class of sequences and the classes are disjoint.

For α,β ∈ R̃, define α < β to mean: for any sequences {an} ∈ α and {bn} ∈ β, the inequality an < bn
holds for all sufficiently large n. Then it is easy verify that

[[x]] < [[y]]⇔ x < y if x, y ∈ R (1)

Also, −∞ < α <∞ for all α ∈ [[R]], and −∞ < ∞. Thus (a) holds with x replaced by [[x]].
Suppose α,β ∈ R̃, and α 6= −∞ 6= β. It is easy to see that the following four cases are exhaustive:

(i)α, β ∈ [[R]] (ii)α ∈ [[R]] and β =∞ (iii)α =∞ and β ∈ [[R]] (iv)α, β =∞.

It is equally straightforward to see in each of the four cases that, for any sequences {an} ∈ α and {bn} ∈ β,
the related sequence {an + bn} belongs to a unique γ ∈ R̃. Therefore we may define α+ β to be this unique
γ ∈ R̃.

In the course of arguing for the unique γ, it is also seen that

[[x]] +∞ =∞+ [[x]] =∞ if x ∈ R,

∞+∞ =∞

and
[[x]] + [[y]] = [[x+ y]] if x, y ∈ R (2)

One can proceed analogously when α,β ∈ R̃, and α 6=∞ 6= β. All this establishes that α+ β is uniquely
defined except when one of them is ∞ and the other is −∞ and that addition satisfies (c) as well as the
properties claimed for it in (b), but with x replaced by [[x]].

Now consider α,β ∈ R̃. When α,β ∈ [[R]], any sequences {an} ∈ α and {bn} ∈ β must be constant
sequences and it is immediate that the related (constant) sequence {anbn} belongs to a unique δ ∈ [[R]] ⊆
R̃. When α = ∞, the following five cases for β are exhaustive:
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[[0]] < β ∈ [[R]] , [[0]] > β ∈ [[R]] , [[0]] = β, β =∞, β = −∞.
In each of the five cases, it is easy to arrive at the conclusion that: for any sequences {an} ∈ α and {bn}
∈ β, the related sequence {anbn} belongs to a unique δ ∈ R̃. We note that it is essential here for β = [[0]]
to consist of only the constant sequence {0,0,. . . }. Similarly when α = −∞. In view of the commutativity
of multiplication in R, the same conclusion can be drawn for the ten cases when β = ±∞. (It is inessential
to the argument that the actual number of distinct cases is not 20 but 16, because the four cases when α =
±∞ and β = ±∞ will occur twice among the 20.) Thus all cases have been covered and the aforementioned
conclusion holds for all α,β ∈ R̃. Therefore we may define αβ to be this unique δ ∈ R̃.

In the course of arguing for the unique δ, it is also seen that multiplication satisfies

[[x]] [[y]] = [[xy]] if x, y ∈ R (3)

as well as (d),(h), and that it further satisfies (f),(g), with x replaced by [[x]].

For any α ∈ R̃, there is a unique element −α ∈ R̃ such that

− [[α]] = [[−α]] if α ∈ R

and −(−∞) = ∞, −(∞) = −∞. Indeed, −α is the unique element of R̃ such that whenever {an} ∈ α, the
sequence {−an} belongs to the class −α. This proves (e).

In view of (1), (2) and (3), the bijection x → [[x]] is an isomorphism of ordered fields. Thus the subset
[[R]] of R̃ is an isomorphic image of R.

Having completed the construction of a system satisfying (a)—(h) and containing an isomorphic image
of R, we now turn our attention to the associative and distributive laws.

Suppose that either none among α,β,γ is ∞ or that none is −∞. Let {an} ∈ α, {bn} ∈ β and {cn} ∈ γ.
Then (α+ β) + γ is the unique class in R̃ containing the sequence {(an + bn) + cn}, while α+ (β + γ) is the
unique class in R̃ containing the sequence {an + (bn + cn)}. By the associativity of addition in R, it follows
that the classes are the same. Thus the equality

(α+ β) + γ = α+ (β + γ)

holds provided that

either none among α, β, γ is∞
or none among α, β, γ is −∞.

Similarly, the equality

α(β + γ) = αβ + αγ

holds provided that

either none among β, γ, αβ, αγ is∞
or none among β, γ, αβ, αγ is −∞.

In fact, both sides of the equality are the unique class containing the sequence {an(bn + cn)}, where {an}
∈ α, {bn} ∈ β and {cn} ∈ γ. It is left to the reader to formulate the corresponding statement regarding
(αβ)γ = α(βγ), which is valid without any restrictions on α,β,γ.
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We conclude with two remarks.

1. If [[x]] were enlarged to include all real sequences converging to x, then the properties (a)—(g) would
follow in the same manner as above, but ±∞ · 0 and 0 · (±∞) would remain undefined.

2. If in the construction of R by Dedekind cuts as in [1, pp.17-21] or [3, pp.47-52], one includes the empty
set and Q as cuts, then one gets R̃, with the empty set serving as −∞ and Q as ∞. The additional effort
involved in checking this is minimal. However, the sum −∞ +∞ needs to be specifically excluded in the
general definition of sum, because otherwise it works out to be −∞.
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An open letter concerning

The problematic nature of Gödel’s theorem

Hermann Bauer and Christoph Bauer

Our paper “The problematic nature of Gödel’s theorem” was rejected by MLQ (Mathematical
Logic Quarterly). The managing editor (admittedly) has not read it, and no reviews were provided.
His argument in favor of rejection was essentially that (a) “Gödel’s results and techniques of proof
are well-acknowledged by the scientific community . . . since a lot of versed logicians have given
detailed and well-understandable presentations and modifications of these results and proofs in a
lot of frequently read textbooks.” Additionally (b) the editor claims that in general texts like ours,
which try to disprove well-accepted results, “. . . finally demonstrate only a lack of understanding
by the authors. It cannot be the task of editors and referees to disprove all these ‘disprovers’. In
some cases, their errors are obvious, sometimes it takes a considerable amount of time to point out
them. Who would spend this?”

In answer to (a) we would like to note that to our knowledge all secondary authors have directly
assumed and sometimes even increased the problems of Gödel’s original work we raise in our paper.
As to (b) we would like to state that if indeed all or most such critics hitherto demonstrate only a
lack of understanding by the authors, it may be improbable, but not impossible, that our criticism
is nonetheless valid. As we are convinced that it actually is we would further like to point out
that mathematical truth is not a question of probability. We recognize that many editors and
referees, already over-burdened, must necessarily perform a certain degree of “triage” as papers are
submitted—but does this not constitute a significant hole in the peer-review system? Is it possible
to publish a mathematical paper which challenges the accepted orthodoxy?

We think that our paper could and should create a useful and necessary discussion about Gödel’s
theorem although, and in fact precisely because, it is a well established and unquestioned part in
mathematical literature.
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The problematic nature of Gödel's theorem 
 

 

Hermann Bauer
1
 and Christoph Bauer

2
 

  

 
Abstract 

 

In this paper we will show that some fundamental deductions Gödel’s famous theorem is based upon, 

are highly problematic: Gödel begins the main part of his theorem by correlating to each formal ex-

pression (e.g. the variables) of a formal system a natural number. He calls the totality of these numbers 

x and he uses this x as a variable in recursive formulas. Then he correlates to each number x the formal-

ized numeral x.  We will show that x can be nothing else than a variable in the formal system. In the 

well-known mapping (―Gödelization‖) he considers x as a predicate and correlates to it an expression, 

that is variable. This is contrary to the correlation of a fixed number to each variable, as the mapping is 

stated to be biunique. Gödel wanted the mapping itself not to be directly included in the proof, but in 

fact it is included and this is veiled by an incorrect predicate. In a further step (Corollary V) he effec-

tively replaces x (that has a variable image) by the variable a (that has the image 17). This problem 

shakes the foundation of Gödel’s theorem and therefore its validity should be discussed again without 

any dogmatism. 
 

 

1   Introduction 
 

Gödel’s theorem of incompleteness [3] is regarded as a fundamental part of metamathematics, and is not 

taken into question any more. One reason for this might be its age: One might believe that any mistake 

should have been discovered during more than seventy years. But one must consider the following: Gödel 

developed especially for his theorem complete new methods of proof, which could not easily be validated 

at the time. His sensational results themselves could be understood easily, the proof however was difficult 

to follow. Therefore many mathematicians accepted the proof without thorough examination. Though 

from time to time the theorem was criticized in manuscripts submitted to mathematical journals, but ap-

parently none of these has been published.  

Kleene in [4] performed a meticulous reworking of the proof. His intention was obviously to explain 

Gödel’s theorem perfectly and to support its understanding, without however questioning the correctness 

of the proof. This might explain why such an outstanding mathematician took over uncritically a highly 

problematic predicate (see p1 and p2 in this paper) and made an incorrect deduction of it. Most later au-

thors based their arguments on Kleene and did not correct this mistake either, using Gödel’s methods 

without thorough examination to deduct other mathematical sentences. This of course does not demon-

strate the correctness of the theorem, because one can deduct true as well as wrong sentences from a 

wrong sentence.  

But the whole time it was problematic to understand, that the theorem can be correct, because the well 

known abridged version ―a formula, that means its own improvability‖ is a circular statement. Such 

statements are highly problematic, for a statement on ―something‖ must have a larger content than the 

mere naming of this ―something‖, but both are identical here. But how can a statement be larger than it-

self? This becomes possible in Gödel’s theorem, as we will show, because in the Gödelization he uses 

two essentially different mappings of the variables, one of them having a larger content than the other. 
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On the other hand abridged versions were for many mathematicians a reason to accept the theorem, as 

the contents of the proof seems to be quite plausible there. In the first part of our paper (Sections 2.1 and 

2.2) we will show the reader that this is problematic, as the abridged versions are by nature not usable to 

take a final decision upon the truth of a theorem (see also discussion in [1]). 

In Section 3 we will support our arguments by going back to Gödel's original paper. The crucial prob-

lematic of the theorem will be raised in Section 4: In the proof the term x, that represents the ―numerals‖ 

(formalized numbers), is a variable, the Gödelizing of which is highly problematic.  

In the last section we will finally extend these realizations to a more general level and invite the read-

ers to discuss its implications.  
 

2   The problematic nature  
 

2.1 The problematic nature of the first abridged version of Gödel’s theorem 
 

As is generally known the goal of Gödel’s theorem is to produce an explicit number-theoretic formula, 

which is undecidable i.e. neither provable nor refutable. The existence of such a formula had not yet been 

proven and according to Hilbert’s program was not possible at all.  

The best known abridged version was formulated by Gödel himself: “Wir haben also einen Satz vor 

uns, der seine eigene Unbeweisbarkeit behauptet.” ([3], p.175.) Kleene translates/formulates it as follows 

([4], p. 205): ―A means that A is unprovable.‖ The word ―mean‖ implies ―is equivalent‖ i.e. the formula is 

then and only then unprovable, if it is true. If ―true‖ would be equivalent to ―provable‖ then the formula 

would be provable then an only then, if it is not provable. That would be a contradiction against formal 

logic. To avoid this contradiction one must assume that there exists a true and unprovable formula. This 

anticipates the result of the proof (because a true formula cannot be refused, if arithmetic is consistent).  
   

2.2   The problematic nature of the second abridged version of the theorem 
 

A second version that has been published in the journal “Spektrum der Wissenschaft” ([4], p.51) seems at 

first sight again plausible, but as we will show is wrong: The set of all proofs is enumerable and also the 

set of all formulas. It is possible to find a formula Dem(a;b) that is provable then and only then, if b is the 

number of a proof and a is the number of the formula proved by this proof. Now one can build the for-

mula: 
 

 f(a)   b ( Dem(a;b)), (1a) 
 

which means, that the formula with number a is not provable. The number of formula 

(1a) now is named g, and then it is stated, that the formula 
  

 f(g)   b ( Dem(g;b)) (1b) 
 

built by substituting g for a in formula (1a) means her own improvability. That is incorrect. In fact fol-

lows to the provability of formula (1b) that formula (1a) and not formula (1b) itself is unprovable.
3
  

 

3   Main features of Gödel’s theorem 
 

Gödel begins his theorem with a formal mathematical system (NL) that comprises formal number theory 

and logic. (We call it upper level). The object language of this system has for its base seven
4
 formal sym-

                                                           
3
 (1a) is obviously refutable, because it contains a free variable and is refuted by any proof. Therefore (1b) is prov-

able. 
4
 It is  useful  (we think necessary) to add an eighth  zero entity for ―equal to‖ as Kleene did (We choose 15). He also 

added  zeroes for ―plus‖ and  ―times‖ and ―successor variable‖ and uses another sort of Gödelization. 
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bols and moreover an infinite number of symbols for variables, as presents the following table (Gödel 

calls them “Grundzeichen”, Kleene calls them ―zero entities‖ or shortly ―zeroes‖). 

 

 

Zero entities in upper 

level NL 
Name 

Correlated numbers in 

lower level cn 

0  (in bold) zero  1 

  successor  3 

 not  5 

 or  7 

 for all  9 

( opening bracket  11 

) closing bracket 13 

= equal to 15 

a first variable  17 

b second variable  19 

x third variable 23 

y fourth variable 29 

etc.  etc. etc. 

 

 

All formal objects of the System NL are finite sequences of zero entities (“Grundzeichenreihen” by 

Gödel). E.g. the natural numbers greater than 0 are represented by ´0, ´´0, ´´´0 … .
5
 i.e. by two zero enti-

ties. We write N1, N2, N3 … N(n) for that. They are called ―numerals‖ (“Zahlzeichen” by Gödel).  

Formal expressions that are identical are connected by ―‖. At cn (see below) this is correlated to ―=‖. 

Now distinct odd numbers are correlated to the zero entities (“Zahlengrundzeichen” by Gödel—see  

the third column of the table). To each formal object is in this way correlated a sequence of odd numbers
6
:  

 

 X  n1 n2 n3  .... nk 
 

By the well-known Gödelization now to each formal object is correlated by a bi-unique mapping a 

natural number x~  (Gödel number)
7
: 

 

 X  x~ , where
8
 (2a) 

 

 
x~ = G[X] = G[n1 n2 n3  ... nk]  =

 ,k321

n

k
...

nnn

p532   (2b) 

 

where pk is the k-th of the prime numbers in order of magnitude. For example is: 
 

G[N2] = G[´´0 ] = 
133 532  = 1080 

 

By this mapping and the theory of primitive recursive functions it becomes possible to develop for 

metamathematical predicates PR(X) in NL  equivalent  formulas pr( x~ ) in classical number-theory cn (we 

                                                           
5
  Gödel places the successor symbols before the zero symbol. 

6
 X is a variable Expression of course. 

7
 The tilde above x is placed to distinguish it from the variable x in NL. Gödel wrote x only. We later on will realize 

that x~ is in fact a variable in cn. The exact formulation for ―the number x~  ‖ therefore is : ―a value of the variable 

x~ .‖ 
8
 G[X] is only a short expression für the Gödel number of X.  
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call it ―lower level‖). For example ―X is a numeral‖, ―X is a variable‖, ―X is a formula‖, ―X is an axiom‖ 

etc. and finally (for two formal expressions X and Y) ―Y is a proof for X‖ ([4], p. 253 f). For example the 

equivalent for the predicate V(X)  ―X is a variable‖ is
9
: 

 

 v ( x~ ):  z ( x~  = 2
z 
 prim z

 
 z  13). (3) 

 

It means, that the number correlations z to the variables are the primes greater 13 and their Gödel 

numbers are 2
z
.  

The decisive step of deduction in Gödel’s proof (that was ignored in the abridged version 2.2) is, that 

in each formula X(a) with the single free variable a the ―Gödel numeral‖ of X(a) is substituted. 

The Gödel numeral is defined as the formalized Gödel number i.e. the zero (0) with leading successor 

signs (´) their number being x~ .  

We write according to Kleene x for the Gödel numeral
10

 of the Gödel number x~ (and n for the nu-

meral of the number n).  

The Gödel number of x is: 
 

 G[x] =
1

1x

3

x

333 pp532


 ~~... . (4) 

 

The result of the substitution one can write R  Xx(x). We call it the ―Richard formula‖ of the formula 

X(a).  

Let be e.g. X(a)  a = a. Then is GX(a) = x~  = 2
17

 · 3
15

 · 5
17

, and x = N (2
17

 · 3
15

 · 5
17

) (for the mean-

ing of  ―N” see above) and the Richard formula of X(a) is: 
 

                                                     x = x, i.e.,  
 

N (2
17

 · 3
15

 · 5
17

 ) = N (2
17

 · 3
15

 · 5
17

 ). 
 

We can shorten the substitution- predicate as follows (cf. ([4], p. 253 Dn5):  
 

 R  Xx(x)   SB(X,a,x); (5a) 
 

 

Its equivalent in cn is
11

:  
 

 r~ = sb ( x~ , 17, G [x]), (5b) 
 

that means in essence, to get r~ one must replace on the right side of (2b) the potencies with exponent 17 

by G [x] of (4) and then increase
12

 the primes of G [x] and the following primes in this way that all primes 

are positioned in order of magnitude again (see [3], p. 184). 

In order to carry out the substitution (5a) Gödel establishes a predicate that relates x~  to x, the prob-

lematic connected with that will be shown in section 4.  

Ahead of this we will present the remaining part of the theorem. Gödel now creates in NL
13

 the predi-

cate ―Y is a proof for Xx(x)‖
14

. The equivalent of this in cn can by recursions be formulated as 
 

 dem´( x~ ; y~ ), (6a) 
 

where x~ is the Gödel number of X(a) and y~  is the Gödel number of Y. Formula (6a) now is ―formally 

expressed‖ i.e. an equivalent formula is created in NL
15

 : 

                                                           
9
 according to [3], p. 182, no. 11 for n = 1.   

10
 I will show later on x to be a variable in NL. Today x is written for x.   

11
 See in [3], p. 188 formula (8.1) the expression on the right side in square brackets, where stands y instead of x 

(and 19  instead of 17) . Gödel writes Z(x) instead of G[x] and sets the number 17 above instead of ahead of  it. Let it 

be noted that  Xx(x) is not a formal Expression in NL, but its equivalent in cn is a term there. 
12

 Only if 17 is the first exponent G[x] remains unchanged. 
13

 For Gödel´s mode of formulation see section 4.1. 
14

 The exact predicate is ―X is a proof of Yy ― – X and Y  are exchanged. 
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Rejecta Mathematica Vol. 2, No. 1, June 2011

This work is published under the Creative Commons Attribution-NonCommercial License. http://creativecommons.org/licenses/by-nc/2.5/legalcode

53

http://math.rejecta.org
http://creativecommons.org/licenses/by-nc/2.5/legalcode


    

 

 DEM´ (x; y), (6b) 
 

where x it the numeral of x~  and y that of y~ . 

This is combined with the second problematic step, which effectively comes to replace x by the vari-

able a and y by the variable b. The result of this step is (cf. [4], p. 206, LEMMA 21): 
 

 DEM´(a; b). (6c) 
 

Formula (6c) is (if we accept the deduction) provable then and only then, if there is substituted for a 

the Gödel numeral x of a formula X(a) and for b is substituted the Gödel numeral y of a proof of the Rich-

ard formula  Xx(x) of X(a). 

The next formula created is: 
 

 f(a)   b ( DEM´(a;b)). (1a’) 
 

In this formula finally its Gödel numeral g is substituted for the variable a: 
 

 f(g)  b ( DEM´ (g;b)). (1b’) 
 

 (1b’) means, that the Richard formula of the formula with the Gödel numeral g is unprovable. The 

formula with the Gödel numeral g is formula (1a’); its Richard formula is formula (1b’) itself. It means, 

that it is unprovable. Now it is easy to demonstrate, that formula (1b’) is formally undecidable in a consis-

tent (-consistent respectively) arithmetic system. 
  

4   The fundamental problematic nature of the theorem 
 

The key problematic of the theorem has to do with the meaning of x. The question is, whether in the proof 

x can be anything else than a variable in NL. We deny this and will justify our conclusion soon. At first 

we would like to explain the consequences for Gödel’s proof: The Gödelization correlates to x the vari-

able expression G[x] of formula (4). If x is a variable it must be correlated a definite natural number to it. 

There results the contradiction G[x] = const (see 4.3.3). 
  

4.1   The problematic relation and its correction 
 

We will now show how Gödel establishes the predicate concerning the relation between x~  and x, earlier 

referred to be problematic. Since Gödel’s mode of formulation is very unusual, we will equally refer to 

Kleene´s reworking afterwards.  

As is generally known, statements on itself can produce antinomies by their “Zirkelhaftigkeit” (bas-

ing on a circular argument). The abridged version above (Section 2.1) is such a statement. Gödel com-

ments on this problem with the words:  
 

―Ein solcher Satz hat entgegen dem Anschein nichts Zirkelhaftes, denn er behauptet zunächst die 

Unbeweisbarkeit einer ganz bestimmten Formel und erst nachträglich (gewissermaßen zufällig) 

stellt sich heraus, daß diese Formel gerade die ist, in der er selbst ausgedrückt wurde.‖  ([3], p. 

175, footnote 15).   
 

Such a theorem against appearance has nothing to do with a circular argument, because it first of 

all states the improvability of a definite formula and later only (so to speak coincidentally) it 

emerges, that this formula is just the one, that expresses the theorem itself. 
 

In order to avoid antinomy on any rate, Gödel intends, to carry out all calculations on the lower level 

cn, but to name there the terms and formulas after their meaning in the upper level NL written in italics 

([3], p. 179, line 20f).  

                                                                                                                                                                                           
15

 This step is left out in the referee of Nagel and Newman [6], p. 82 – 89, therefore it is not correct. 
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For examples: The sentence in the metalanguage of NL ―a is a variable‖ Gödel formulates
16

: “17 is a 

variable (italic)‖. The sentence ―´0 is a numeral‖ Gödel would formulate: ―
13 32   is a numeral (italic)‖ 

that means: ―
13 32  is correlated (by Gödelization) to a numeral.‖  

If that procedure is carried out consequently, any antinomy can be avoided in fact. But Gödel is in-

consequent, for he defines the following predicate ([3] p.183, nr. 16 and 17): ―G[n] is the numeral (ital-

ics) for the natural number (not italics!) n‖. One can write for this: 
 

 nu(G[n]; n). (7a) 
 

The inconsequence is, that ―natural number‖ is not written in italics. It is an expression of the lower 

level cn and is named at this level. Gödel here contradicts his declared intention, to name only after the 

meaning in the upper level NL. The consequent formulation of the meaning of (7a) becomes obvious, if 

one pursue, how Gödel uses it further: He replaces n by x~ and G[n] by G[x] (i.e. Z(n) by Z(x) in his for-

mulation) without mentioning that particularly
17

. We formulate the result analogous to the predicate and 

(7a):   
 

 ―G[x] is the numeral for the natural number x~ ‖, and (p1) 
 

 nu(G[x]; x~ ). (7b) 
   

(7b) is a relation at the lower level and corresponds with formula (4) in this paper. A consequent for-

mulation of its meaning (according to Gödel´s declared intention) one finds by considering, that x~  is the 

Gödel number, correlated to the formal expressions X(a) of NL
18

. The correct formulation in Gödel´s 

diction therefore is: ―G[x] is the numeral (italics) correlated to the formal Expression (italics!) X(a).‖ It 

means at the upper level ―x is the numeral (not italics) correlated to the formal expression (not italics) 

X(a).‖ The consequences of this we will clarify after having referred its reworking by Kleene. 
 

4.2   Reworking by Kleene 
 

Gödel simultaneously works in both levels, as we saw. Kleene does not adopt this. He formulates the 

metatheory at the upper level NL and wants to separate strictly the number-theoretic equivalents at the 

lower level cn. But he is equally inconsequent in connection with the problematic predicate (p1). He for-

mulates at the upper level the predicate:  
 

 ―x is the numeral for the natural number x~ ‖
19

 (abbreviation Nu(x; x~ ). (p2) 
 

That is inadmissible, for x~  does not exist at this level. (p2) is a mixed predicate. The equivalent in 

cn Kleene formulates effectively
20

: nu(G[x]; x~ ), i.e., he correlates x~ to x~ , which is wrong.  

The correction is only possible at the upper level. As we already have seen, x~ must be replaced there 

by the formal object  X(a): 
 

 NU(x; X(a)). (8) 
 

Therefore it must be possible to relate the formal objects directly at the upper level to their Gödel 

numeral x without the detour via x~ . We can write: 
 

 X(a) x. (9) 
 

                                                           
16

 He writes 17 instead of  2
17

. 
17

 See [3], p. 188 formula (8.1). It is notable, that Gödel names n a natural number, where x is an argument of the 

recursive relation Q (x;y), i.e. it is a variable (see section 4. 3. 3). 
18

 The restriction to X(a) instead of  X  is insignificant of course. 
19

[4] p.254, DN11 and  [7] p. 38 V11 
20

 according to [4], p. 258, example 2 and explicit [7] p. 42, line 14    
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This way the mapping of Gödelization is directly included in the proof, although Gödel wanted to 

avoid this. 
    

4.3   Consequence for the meaning of x 
 

Predicate (8) requires x to be defined immediately in NL. Therefore we have to search the meaning of x in 

NL. 
 

4.3.1   Metamathematical symbol 

Can one interpret x as a metamathematical symbol for a numeral, which can be replaced by a numeral? 

(cf. [4], p. 82f.)  

Such a metamathematical symbol however is not a formal expression in NL and therefore has not a 

number-theoretic image in cn, while x has the image G[x] there. 
 

4.3.2   Infinite set 

Another possible interpretation would be to interpret x (and y also) as a symbol for an infinite set of nu-

merals in NL. According to that DEM´ (x; y) would be an infinite set of formulas in NL. But Gödel´s 

proof requires drawing a conclusion from this infinite set to a formal expression and this is not expressi-

ble in a formal deduction that must be finite.  

The problem will be clarified by giving the gist of the central corollary V at Gödel (([3] p.186) ap-

plied to the step of deduction from formula (6a) to formula (6b) in this paper respectively (6c) (we refer to 

it in a diction according to the one used in this paper hitherto):      

For the recursive relation dem´( x~ ; y~ ) there exists a relation (“Relatiosszeichen” by Gödel) DEM´(a; 

b) with the free variables a and b and for all pairs of numbers x~ ; y~  the following is valid: From 

dem´( x~ ; y~ ) follows that DEM´ (x; y) is provable.  

The proof of this corollary (not given by Gödel, but by Kleene in ([4] p. 238 to p.245) represents an 

infinite set of proofs, each having the result ―DEM´ (x; y) is provable‖, where x and y are elements of 

infinite sets of numerals corresponding to the numbers x~  and y~ . But these sets are not expressible in the 

formal system NL and therefore a conclusion to a relation DEM´(a; b) is not possible there.  

This objection is also valid for the mathematical sketch of the proof, that Gödel sets ahead of it ([3], 

p. 174f, where the ―class K‖ is an infinite set of natural numbers), but for which he however did not de-

mand exactness. 
  

4.3.3   Variable 

In Gödel’s proof x~  and y~  are variables, for he uses them as arguments of recursive relations basing on 

recursive functions, whose arguments are variables of course. Using (7a) in the formulation of (7b), he 

defines a recursive relation Q( x~ ; y~ ), where x~  and y~  are variables.
21

 

The correct interpretation of (2b) therefore is: By the Gödelization the variable x~  is correlated to the 

variable formal expression X in this sense, that to each formal expression is correlated a value of the vari-

able. The equation of this correlation can be expressed by (2b).  

According to that x is correlated to X in NL (8 and 9) and therefore x can be nothing else than a vari-

able in NL e.g. x.
22

 This result moreover can be realized by the following deduction:  

The mixed predicate Nu(x; x~ ) (p2) according to Kleene ([4], p. 254) is defined as follows
23

:  
 

Nu(0; 0)  ((Nu(x; x~ )  Nu(´x; x~ +1)). 
 

By induction proof results: 
                                                           
21

 cf. [4] p. 254 – 258 
22

 We can write Xx , where x is a parameter. 
23

 I use the formal symbols, though the predicates are mixed ones.  
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n( x~ = n  x = n). 
 

The correct interpretation of this predicate is: ―x is a corresponding variable in NL to the variable x~  

in cn‖. Therefore x is identical with a variable in NL (e.g. x   x).  

But now in cn is correlated to this the contradiction G[x] = const (e.g. G[x] = 2
17

) for all x. Therefore 

the nature of x is highly problematic.  

If we could accept x and y to be variables, the last statement of corollary V could be formulated very 

simply:    

… for all pairs of number values of (the pair of variables) x~ ; y~  the following is valid: From dem´( x~ ; y~ ) 

follows that DEM´ (x; y) for the corresponding pair of numeral values (of the pair of variables x; y) is 

provable. The transition to DEM´(a; b) then only changes the names of variables.  

In Gödel’s theorem the problematic nature of x and y is transmitted to all other variables e.g. to a and  

b. Only if one ignores this, one can correlate to formula (1a’) a fixed Gödel numeral g. Only then one can 

substitute this numeral in (1a’) for the variable a and create the formula (1b’), that states something about 

itself.  
 

 5   The depth of the problem  
 

The key problematic represented in this article concerns the problem of mapping the formal expressions 

of NL into the natural numbers of cn. For such a mapping the basic elements need to be independent of 

each other. This is not the case here. The signs correlated to ―zero‖, ―successor‖ and ―variable‖ are not 

independent. We can define the recursive predicate ―S(x) is the x-th successor of 0‖ as follows. S(0) = 0 

and S(´x) = ´S(x). Then is valid: S(x) = x           S (´x) = ´S(x) = ´x. Therefore it results (by induction 

proof):   
 

x(S(x) = x), i.e. S(x)  x 
 

 Therefore two different images (G[x] and a constant) of a variable are possible, although the map-

ping is stated to be unique and therefore circular deductions and finally contradictions result.  

The problem is connected to the notion of variables in general. Are variables entities for themselves 

or vacant places only for concrete numbers (respective numerals)? Both opinions are possible, but both 

are one-sided. Their combination only makes the notion of variables comprehensible. At the Gödelization 

however it is impossible to combine both opinions. An entity for itself should have a definite Gödel num-

ber, whilst to a vacant place the Gödelization should correlate a vacant place.
24

 Therefore a unique map-

ping of the full notion of variables is impossible.   A discussion of this problem is necessary and wel-

come. 

The existence of undecidable formulas has tried to be proven with the aid of Turing machines. If such 

proofs use a predicate like (p2) they are equally problematic.
25

  

However there are proofs of this subject, which are based on the theory of machine-numbers. These 

are not discussed here.
26

 
 

 

 

6   Summary  
 

As we have shown, Gödel’s theorem has key problematic that asks for further discussions. As we pointed 

out these problems are not obvious, as the formulas of the lower level as well as the predicates of the 

higher level are by themselves correct. If Gödelization is accepted as a fact one can then indeed deduct 
                                                           
24

 The problem has relations even to the discussion about formalistic and realistic conception of ideas (cf. [1], p. 16). 
25

 Kleen formulates such a proof in [4],  p. 376-386. 
26

 cf [2], Kap. 10.  
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without any further contradiction formulas, that state something about themselves, e.g. that a formula 

states itself to be provable, decidable, refutable, not existent‖(!) etc.  But the mapping itself and only this 

is contradictory: The expression x is a variable and must have a fixed natural number as an image and not 

the variable expression G[x]. As a consequence the deduction of Gödels theorem becomes impossible, as 

the variable a  has then a variable image and the image of X(a) for a fixed X is variable too. Only by using 

two essentially different images of the variables it becomes possible to make statements about them-

selves. The incorrect deductions (p1 in this paper and corollary V in [3]) veil the notion of x as a variable.      
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An open letter concerning

Scattering, determinants, hyperfunctions in relation

to Γ(1−s)
Γ(s)

Jean-François Burnol

I wrote this paper in 2006, and submitted it to a journal specializing in integral equations and
operator theory. After circa 14 months I received a report which I reproduce in full here (I allow
myself to correct the spelling of a mathematician’s name cited in the report):

“In spite of desperate efforts, the referee has failed to understand what the paper is about.
Apparently it does not have a definite goal but consists of miscellaneous remarks to the papers by
de Branges and Rovnyak. It is practically impossible to distinguish original results in this jumble.
Actually, the text does not look as a mathematical article but rather as some notes for personal use.
In the referee’s opinion, the paper should be rewritten according to conventional rules and its volume
should be divided by the factor 5-10. The author should try to formulate the results which he
considers to be new.”

Let me explain why I consider the publication of the paper important. First of all the referee’s
report only serves to demonstrate that the referee did not read the manuscript. I tried to point
this out to the editor in chief, to no avail:

“ Dear Professor Burnol,
I read all your letters to us. I am not changing my mind! Your paper is not accepted for publication.
This decision is final and the discussions about this paper this time I consider finished. Sincerely,
XXX ”

I think this illustrates nicely how dysfunctional the peer-review process may be, at times.
Regarding the paper itself, it is well structured, and its goal was to prove new mathematical
theorems (!), a goal which was achieved (!). I corrected a typo in 2008 (there was a superfluous
imaginary i in some equations, see the footnote on page 1), this is the only change to the 2006
version.

The referee asked me to divide the “volume” by between five and ten, a request which at that
time particularly infuriated me. In fact, a more acceptable comment would have been to point out
that the paper contained material for between 3 and 5 reasonably sized quasi-independent publi-
cations (of reasonable, but obviously not earth-shaking interest!), but I wanted to make a common
exposition with in particular a common introduction. What would be the point of repeating 5
times the same introduction? An introduction is made necessary by the fact that my perspective
is unique and links together a priori disjoint topics, the reader needs some help in entering this
framework.

Another difficulty is that in 2008, during a stay at Institut des Hautes Études Scientifiques
(IHES), I made very significant advances (establishing links with domains apparently completely
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unrelated, and which moreover have been of great interest for the last thirty years to large commu-
nities of researchers), on which I have had opportunities to give lectures at IHES, at the European
Conference of Mathematics (ECM) at Amsterdam, and at a workshop at the Independent Uni-
versity of Moscow (Conference Zeta functions II). I have circulated a hand-written manuscript of
about 80 pages, and prior to publishing this novel material in peer-reviewed journals, I need to
make my earlier work available to the mathematical community.

I did sufficiently serious and dedicated work on this in 2006 resulting in a paper of about 65
pages. It would be all too easy, and far more beneficial to my career, to instead divide the paper
into at least 3 publications, but I just don’t see the point. If one is not sufficiently committed to
mathematics to place great importance on the form one gives to one’s own contributions, if one is
ready to obey arbitrary diktats, if all that matters is adding lines of publications to a CV, then
one practices a job and not a passion and one does not care about his/her legacy, one lives amidst
superficial illusions and pleasures.

This paper will be necessary reading to get a full understanding of my earlier as well as of my
future works.
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Scattering, determinants, hyperfunctions in relation to Γ(1−s)
Γ(s)

Jean-François Burnol∗

Abstract

The method of realizing certain self-reciprocal transforms as (absolute) scattering, previously
presented in summarized form in the case of the Fourier cosine and sine transforms, is here ap-
plied to the self-reciprocal transform f(y) 7→ H(f)(x) =

∫∞
0
J0(2
√
xy)f(y) dy, which is isometri-

cally equivalent to the Hankel transform of order zero and is related to the functional equations
of the Dedekind zeta functions of imaginary quadratic fields. This also allows to re-prove and
to extend theorems of de Branges and V. Rovnyak regarding square integrable functions which
are self-or-skew reciprocal under the Hankel transform of order zero. Related integral formu-
lae involving various Bessel functions are all established internally to the method. Fredholm
determinants of the kernel J0(2

√
xy) restricted to finite intervals (0, a) give the coefficients of

first and second order differential equations whose associated scattering is (isometrically) the

self-reciprocal transform H, closely related to the function Γ(1−s)
Γ(s) . Remarkable distributions

involved in this analysis are seen to have most natural expressions as (difference of) boundary
values (i.e. hyperfunctions.) The present work is completely independent from the previous
study by the author on the same transform H, which centered around the Klein-Gordon equa-
tion and relativistic causality. In an appendix, we make a simple-minded observation regarding
the resolvent of the Dirichlet kernel as a Hilbert space reproducing kernel.

1 Introduction (The idea of co-Poisson)

We explain the underlying framework and the general contours of this work. Throughout the paper,
we have tried to formulate the theorems in such a form that one can, for most of them, read their
statements without having studied the preceeding material in its entirety, so a sufficiently clear
idea of the results and methods is easily accessible. Setting up here all notations and necessary
preliminaries for stating the results would have taken up too much space.

The Riemann zeta function ζ(s) = 1
1s + 1

2s + 1
3s + . . . is a meromorphic function in the entire

complex plane with a simple pole at s = 1, residue 1. Its functional equation is usually written in
one of the following two forms:

π−
s
2 Γ(

s

2
)ζ(s) = π−

1−s
2 Γ(

1− s
2

)ζ(1− s) (1a)

ζ(s) = χ0(s)ζ(1− s) χ0(s) = πs−
1
2

Γ(1−s
2 )

Γ( s2)
(1b)

The former is related to the expression of π−
s
2 Γ( s2)ζ(s) as a left Mellin transform1 and to the Jacobi

∗E-mail: burnol@math.univ-lille1.fr, Address: Université Lille 1, UFR de Mathématiques, Cité scientifique M2,
F-59655 Villeneuve d’Ascq, France

1in the left Mellin transform we use s− 1, in the right Mellin transform we use −s.
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identity:

π−
s
2 Γ(

s

2
)ζ(s) =

1

2

∫ ∞

0
(θ(t)− 1)t

s
2
−1 dt (<(s) > 1) (2a)

=
1

2

∫ ∞

0
(θ(t)− 1− 1√

t
)t
s
2
−1 dt (0 < <(s) < 1) (2b)

θ(t) = 1 + 2
∑

n≥1

qn
2

q = e−πt θ(t) =
1√
t
θ(

1

t
) (2c)

The latter form of the functional equation is related to the expression of ζ(s) as the right Mellin
transform of a tempered distribution with support in [0,+∞), which is self-reciprocal under the
Fourier cosine transform:2

ζ(s) =

∫ ∞

0
(
∑

m≥1

δm(x)− 1)x−sdx (3a)

∫ ∞

0
2 cos(2πxy)(

∑

n≥1

δn(y)− 1) dy =
∑

m≥1

δm(x)− 1 (x > 0) (3b)

This last identity may be written in the more familiar form:
∫

R
e2πixy

∑

n∈Z
δn(y)dy =

∑

m∈Z
δm(x) (4)

which expresses the invariance of the “Dirac comb” distribution
∑

m∈Z δm(x) under the Fourier
transform. As a linear functional on Schwartz functions φ , the invariance of

∑
m∈Z δm(x) under

Fourier is expressed as the Poisson summation formula:

∑

n∈Z
φ̃(n) =

∑

m∈Z
φ(m) φ̃(y) =

∫

R
e2πixyφ(x) dx (5)

The Jacobi identity is the special instance with φ(x) = exp(−πtx2), and conversely the validity of
(5) for Schwartz functions (and more) may be seen as a corollary to the Jacobi identity.

The idea of co-Poisson [4] leads to another formulation of the functional equation as an identity
involving functions. The co-Poisson identity ((10) below) appeared in the work of Duffin and
Weinberger [13]. In one of the approaches to this identity, we start with a function g on the
positive half-line such that both

∫∞
0 g(t) dt and

∫∞
0 g(t)t−1 dt are absolutely convergent. Then we

consider the averaged distribution g ∗D(x) =
∫∞

0 g(t)D(xt )
dt
t where D(x) =

∑
n≥1 δn(x)−1x>0(x).

This gives (for x > 0):

g ∗D(x) =
∞∑

n=1

g(x/n)

n
−
∫ ∞

0

g(1/t)

t
dt (6)

If g is smooth with support in [a,A], 0 < a < A <∞, then the co-Poisson sum g ∗D has Schwartz

decrease at +∞ (easy from applying the Poisson formula to g(1/t)
t ; cf. [8, 4.29] for a general

statement). The right Mellin transform ĝ ∗D(s) is related to the right Mellin transform ĝ(s) of g
via the identity:

ĝ ∗D(s) =

∫ ∞

0
(g ∗D)(x)x−s dx = ζ(s)

∫ ∞

0
g(x)x−s dx = ζ(s)ĝ(s) (7)

2of course, δm(x) = δ(x−m).
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This is because the right Mellin transform of a multiplicative convolution is the product of the
right Mellin transforms. The necessary calculus of tempered distributions needed for this and
other statements in this paragraph is detailed in [8]. The functional equation in the form of (1b)
gives:3

ĝ ∗D(s) = χ0(s)ζ(1− s)ĝ(s) = χ0(s) ̂I(g) ∗D(1− s) I(g)(t) =
g(1/t)

t
(8)

One may reinterpret this in a manner involving the cosine transform C acting on L2(0,+∞; dx).
The Mellin transform of a function f(x) in L2(0,∞; dx) is a function f̂(s) on <(s) = 1

2 which is

nothing else than the Plancherel Fourier transform of e
1
2
uf(eu): f̂(1

2 + iγ) =
∫∞

0 f(x)x−
1
2
−iγ dx =∫∞

−∞ f(eu)e
u
2 e−iγu du,

∫∞
0 |f(x)|2 dx =

∫∞
−∞ |f(eu)e

u
2 |2 du = 1

2π

∫
<(s)= 1

2
|f̂(s)|2|ds|. The unitary

operator CI is scale invariant hence it is diagonalized by the Mellin transform: ĈI(f)(s) = χ0(s)f̂(s),

Ĉ(f)(s) = χ0(s)f̂(1 − s), where χ0(s) is obtained for example using f(x) = e−πx
2

and coincides
with the chi-function defined in (1b). It has modulus 1 on the critical line as C is unitary. So (8)
says that the co-Poisson intertwining identity holds:

C(g ∗D) = I(g) ∗D (9)

The co-Poisson intertwining (9) or explicitely:

∫ ∞

0
2 cos(2πxy)

( ∞∑

m=1

g(x/m)

m
−
∫ ∞

0

g(1/t)

t
dt

)
dx =

∞∑

n=1

g(n/y)

y
−
∫ ∞

0
g(t) dt (y > 0) (10)

is, when g is smooth with support in [a,A], 0 < a < A < ∞, an identity of (even) Schwartz
functions. If g is only supposed to be such that

∫∞
0 |g(t)|(1 + 1

t ) dt < ∞ then the co-Poisson
intertwining C(g ∗ D) = I(g) ∗ D holds as an identity of distributions (either considered even or
with support in [0,∞)). Sufficient conditions for pointwise validity have been established [8]. The
general statement of the intertwining is C(g ∗ E) = I(g) ∗ C(E) where E is an arbitrary tempered
distribution with support on [0,∞) (see footnote4) and it is proven directly. The co-Poisson identity
(10) is another manner, not identical with the Poisson summation formula, to express the invariance
of D under the cosine transform, or the invariance of the Dirac comb under the Fourier transform.

If the integrable function g has its support in [a,A], 0 < a < A <∞, then g ∗D is constant in
(0, a) and its cosine transform (thanks to the co-Poisson intertwining) is constant in (0, A−1). Up to
a rescaling we may take A = a−1, and then a < 1 (if a non zero example is wanted.) Appropriate
modifications allow to construct non zero even Schwartz functions constant in (−a, a) and with
Fourier transform again constant in (−a, a) where a > 0 is arbitrary [8].

Schwartz functions are square-integrable so here we have made contact with the investigation
of de Branges [1], V Rovnyak [28] and J. and V. Rovnyak [29, 30] of square integrable functions on
(0,∞) vanishing on (0, a) and with Hankel transform of order ν vanishing on (0, a). For ν = −1

2

the Hankel transform of order ν is f(y) 7→
√

2
π

∫∞
0 cos(xy)f(y) dy and up to a scale change this is

the cosine transform considered above. The co-Poisson idea allows to attach the zeta function to,
among the spaces defined by de Branges [1], the spaces associated with the cosine transform: it
has allowed the definition of some novel Hilbert spaces [3] of entire functions in relation with the
Riemann zeta function and Dirichlet L-functions (the co-Poisson idea is in [4] on the adeles of an

3one observes that Î(g)(s) = ĝ(1− s).
4both sides in fact depend only on E(x) + E(−x) as a distribution on the line, which may be identically 0, and

this happens exactly when E is a linear combination of odd derivatives of the delta function.
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arbitrary algebraic number field K; then, the study of the related Hilbert spaces was begun for
K = Q. Further results were obtained in [7].)

The study of the function χ0(s) = πs−
1
2

Γ( 1−s
2

)

Γ( s
2

) , of unit modulus on the critical line, is interesting.

We proposed to realize the χ0 function as a “scattering matrix”. This is indeed possible and has
been achieved in [6]. The distributions, functions, and differential equations involved are all related
to, or expressed by, the Fredholm determinants of the finite cosine transform, which in turn are
related to the Fredholm determinants of the finite Dirichlet kernels sin(t(x−y))

π(x−y) on [−1, 1]. The study
of the Dirichlet kernels is a topic with a vast literature. A minor remark will be made in an
appendix.

We mentioned the Riemann zeta function and how it relates to χ0(s) = πs−
1
2

Γ( 1−s
2

)

Γ( s
2

) and to the

cosine transform. Let us now briefly consider the Dedekind zeta function of the Gaussian number
field Q(i) and how it relates to χ(s) = Γ(1−s)

Γ(s) and to the H transform. The H transform is

H(g)(y) =

∫ ∞

0
J0(2
√
xy)g(x) dx J0(2

√
xy) =

∞∑

n=0

(−1)n
xnyn

n!2
(11)

Up to the unitary transformation g(x) = (2x)−
1
4 f(
√

2x), H(g)(y) = (2y)−
1
4k(
√

2y), it becomes
the Hankel transform of order zero k(y) =

∫∞
0

√
xyJ0(xy)f(x) dx. It is a self-reciprocal, unitary,

scale reversing operator (H(g(λx))(y) = 1
λH(g)( yλ)). We shall also extend its action to tempered

distributions on R with support in [0,+∞). At the level of right Mellin transforms of elements of
L2(0,∞; dx) it acts as:

Ĥ(g)(s) = χ(s)ĝ(1− s) χ(s) =
Γ(1− s)

Γ(s)
<(s) =

1

2
(12)

It has e−x1x≥0(x) as one among its self-reciprocal functions, as is verified directly by series expansion∫∞
0 J0(2

√
xy)e−y dy =

∑∞
n=0

(−1)n

n!2
xn
∫∞

0 yne−y dy = e−x. The identity

∫ ∞

0
J0(2
√
t)t−s dt = χ(s) =

Γ(1− s)
Γ(s)

(13)

is equivalent to a special case of well-known formulas of Weber, Sonine and Schafheitlin [33,
13.24.(1)]. Here we have an absolutely convergent integral for 3

4 < <(s) < 1 and in that range

the identity may be proven as in: e−x =
∫∞

0 J0(2
√
xy)e−y dy =

∫∞
0 J0(2

√
y) 1

xe
− y
x dy, Γ(1 − s) =∫∞

0 J0(2
√
y)(
∫∞

0 x−s−1e−
y
x dx) dy = Γ(s)

∫∞
0 J0(2

√
y)y−s dy. The integral is semi-convergent for

<(s) > 1
4 , and of course (13) still holds. In particular on the critical line and writing t = eu,

s = 1
2 + iγ, we obtain the identities of tempered distributions

∫
R e

1
2
uJ0(2e

1
2
u)e−iγu du = χ(1

2 + iγ),

e
1
2
uJ0(2e

1
2
u) = 1

2π

∫
R χ(1

2 + iγ)e+iγu du.
We have ζQ(i)(s) = 1

4

∑
(n,m)6=(0,0)

1
(n2+m2)s

= 1
1s + 1

2s + 1
4s + 2

5s + 1
8s + · · · = ∑

n≥1
cn
ns and it is

a meromorphic function in the entire complex plane with a simple pole at s = 1, residue π
4 . Its

functional equation assumes at least two convenient well-known forms:

(
√

4)s(2π)−sΓ(s)ζQ(i)(s) = (
√

4)1−s(2π)−(1−s)Γ(1− s)ζQ(i)(1− s) (14a)

(
1

π
)sζQ(i)(s) = χ(s)(

1

π
)1−sζQ(i)(1− s) χ(s) =

Γ(1− s)
Γ(s)

(14b)
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The former is related to the expression of π−sΓ(s)ζQ(i)(s) as a left Mellin transform:

π−sΓ(s)ζQ(i)(s) =
1

4

∫ ∞

0
(θ(t)2 − 1)ts−1 dt (<(s) > 1) (15a)

=
1

4

∫ ∞

0
(θ(t)2 − 1− 1

t
)ts−1 dt (0 < <(s) < 1) (15b)

θ(t)2 =
1

t
θ(

1

t
)2 (15c)

The latter form of the functional equation is related to the expression of ( 1
π )sζQ(i)(s) as the right

Mellin transform of a tempered distribution which is supported in [0,∞) and which is self-reciprocal
under the H-transform:

(
1

π
)sζQ(i)(s) =

∫ ∞

0
(
∑

m≥1

cmδπm(x)− 1

4
)x−sdx (16a)

∫ ∞

0
J0(2
√
xy)(

∑

n≥1

cnδπn(y)− 1

4
) dy =

∑

m≥1

cmδπm(x)− 1

4
1x>0(x) = E(x) (x > 0) (16b)

The invariance of E under the H-transform is equivalent to the validity of the functional equation
of ( 1

π )sζQ(i)(s) and it having a pole with residue 1
4 at s = 1. The co-Poisson intertwining becomes

the assertion:

y > 0 =⇒
∫ ∞

0
J0(2
√
xy)

( ∞∑

m=1

cm
g(x/πm)

πm
− 1

4

∫ ∞

0
g(

1

t
)
dt

t

)
dx =

∞∑

n=1

cn
g(πn/y)

y
−1

4

∫ ∞

0
g(t) dt

(17)
If g is smooth with support in [b, B], 0 < b < B < ∞, then we have on the right hand side
a function of Schwartz decrease at +∞ (compare to Theorem 3), and its H-transform is also of
Schwartz decrease at +∞. The former is constant for 0 < y < πB−1 and the latter is constant for
0 < x < πb. The supremum of the values obtainable for the product of the lengths of the intervals
of constancy is π2. But, as for the cosine and sine transforms, there does exist smooth functions
which are constant on a given (0, a) for arbitrary a > 0 with an H transform again constant on
(0, a) and have Schwartz decrease at +∞ (the two constants being arbitrarily prescribed.)

De Branges and V. Rovnyak have obtained [1, 28] rather complete results in the study of
the Hankel transform of order zero f(x) 7→ g(y) =

∫∞
0

√
xyJ0(xy)f(x) dx from the point of view

of understanding the support property of being zero and with transform again zero in a given
interval (0, b). They obtained an isometric expansion (Theorem 1 of section 2) and also the detailed
description of the related spaces of entire functions ([1]). The more complicated case of the Hankel
transforms of non-zero integer orders was treated by J. and V. Rovnyak [29, 30]. These, rather
complete, results are an indication that the Hankel transform of order zero or of integer order is
easier to understand than the cosine or sine transforms, and that doing so thoroughly could be
useful to better understand how to try to understand the cosine and sine transforms.

The kernel J0(2
√
uv) of the H-transform satisfies the Klein-Gordon equation in the variables

x = v − u, t = v + u:

(
∂2

∂u∂v
+ 1)J0(2

√
uv) = (� + 1)J0(2

√
uv) = (

∂2

∂t2
− ∂2

∂x2
+ 1)J0(

√
t2 − x2) = 0 (18)

It is a noteworthy fact that the support condition, initially considered by de Branges and V. Rovnyak,
and which, nowadays, is also seen to be in relation with the co-Poisson identities, has turned out to
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be related to the relativistic causality governing the propagation of solutions to the Klein-Gordon
equation. This has been established in [9] where we obtained as an application of this idea the
isometric expansion of [1, 28] in a novel manner. It was furthermore proven in [9] that the H
transform is indeed an (absolute) scattering, in fact the scattering from the past boundary to the
future boundary of the Rindler wedge 0 < |t| < x for solutions of a first order, two-component
(“Dirac”), form of the KG equation.

In the present paper, which is completely independent from [9], we shall again study the H-
transform and show in particular how to recover in yet a different way the earlier results of [1, 28]
and also we shall extend them. This will be based on the methods from [5, 6], and uses the
techniques motivated by the study of the co-Poisson idea [8]. Our exposition will thus give a fully
detailed account of the material available in summarized form in [5, 6]. Then we proceed with a
development of these methods to provide the elucidation of the (two dimensions bigger) spaces of
functions constant in (0, a) and with H-transforms constant in (0, a).

The use of tempered distributions is an important point of our approach5; also one may envision
the co-Poisson idea as asking not to completely identify a distribution with the linear functional
it “is”. In this regard it is of note that the distributions which arise following the method of [5]
are seen in the present case of the study of the H-transform to have a very natural formulation as
differences of boundary values of analytic functions, that is, as hyperfunctions [23]. We do not use
the theory of hyperfunctions as such, but could not see how not to mention that this is what these
distributions seem to be in a natural manner.

The paper contains no number theory. And, the reader will need no prior knowledge of [2];
some familiarity with the m-function of Hermann Weyl [10, 21, 26] is necessary at one stage of
the discussion (there is much common ground, in fact, between the properties of the m-function
and the axioms of [2]). The reproducing kernel in any space with the axioms of [2] has a specific
appearance (equation (109) below) which has been used as a guide to what we should be looking
for. The validity of the formula is re-proven in the specific instance considered here6. Regarding
the differential equations governing the deformation, with respect to the parameter a > 0 7, of the
Hilbert spaces, we depart from the general formalism of [2] and obtain them in a canonical form, as
defined in [21, §3]. Interestingly this is related to the fact that the A and B functions (connected
to the reproducing kernel, equation (109)) which are obtained by the method of [5] turn out not
to be normalized according to the rule in general use in [2]. Each rule of normalization has its
own advantages; here the equations are obtained in the Schrödinger and Dirac forms familiar from
the spectral theory of linear second order differential equations [10, 21, 26]. This allows to make
reference to the well-known Weyl-Stone-Titchmarsh-Kodaira theory [10, 21, 26], and to understand
H as a scattering. Regarding spaces with the axioms of [2], the articles of Dym [14] and Remling
[27] will be useful to the reader interested in second order linear differential equations. And we
refer the reader with number theoretical interests to the recent papers of Lagarias [18, 19].

The author has been confronted with a dilemma: a substantial portion of the paper (most of
chapters 5, 6, 8) has a general validity for operators having a kernel of the multiplicative type
k(xy) possessing certain properties in common with the cosine, sine or H transforms. But on the

5at the bottom of page 456 of [1] the formulas given for A(a, z) and B(a, z) as completed Mellin transforms are
lacking terms which would correspond to Dirac distributions; possibly related to this, the isometric expansion as
presented in Theorem II of [1] is lacking corresponding terms. The exact isometric expansion appears in [28] and the
exact formulas for A(a, z) and B(a, z) as completed Mellin transforms appear, in an equivalent form, in [30, eq.(37)].

6the critical line here plays the rôle of the real axis in [2], s is 1
2
− iz and the use of the variable s is most useful

in distinguishing the right Mellin transforms which need to be completed by a Gamma factor from the left Mellin
transforms of “theta”-like functions.

7the a here corresponds to 1
2
a2 in [1].
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other hand the (essentially) unique example where all quantities arising may be computed is the
H transform (and transforms derived from it, or closely related to it, as the Hankel transforms of
integer orders). We have tried to give proofs whose generality is obvious, but we also made full use
of distributions, as this allows to give to the quantities arising very natural expressions. Also we
never hesitate using arguments of analyticity although for some topics (for example, some aspects
involving certain integral equations and Fredholm determinants) this is certainly not really needed.

2 Hardy spaces and the de Branges-Rovnyak isometric expansion

Let us state the isometric expansion of [1, 28] regarding the square integrable Hankel transforms
of order zero. We reformulate the theorem to express it with the H transform (11) rather than the
Hankel transform of order zero.

Theorem 1 ([1], [28]). : Let k ∈ L2(0,∞; dx). The functions f1 and g1, defined as the following
integrals:

f1(y) =

∫ ∞

y
J0(2

√
y(x− y))k(x) dx , (19a)

g1(y) = k(y)−
∫ ∞

y

√
y

x− yJ1(2
√
y(x− y))k(x) dx , (19b)

exist in L2 in the sense of mean-square convergence, and they verify:
∫ ∞

0
|f1(y)|2 + |g1(y)|2 dy =

∫ ∞

0
|k(x)|2 dx . (19c)

The function k is given in terms of the pair (f1, g1) as:

k(x) = g1(x) +

∫ x

0
J0(2

√
y(x− y))f1(y) dy −

∫ x

0

√
y

x− yJ1(2
√
y(x− y))g1(y) dy (19d)

The assignment k 7→ (f1, g1) is a unitary equivalence of L2(0,∞; dx) with L2(0,∞; dy)⊕L2(0,∞; dy)
such that the H-transform acts as (f1, g1) 7→ (g1, f1). Furthermore k and H(k) both identically
vanish in (0, a) if and only if f1 and g1 both identically vanish in (0, a).

Let us mention the following (which follows from the proof we have given of Thm. 1 in [9]):
if f1, f ′1, g1, g′1 are in L2 then k, k′ and H(k)′ are in L2. Conversely if k, k′ and H(k)′ are in
L2 then the integrals defining f1(y) and g1(y) are convergent for each y > 0 as improper Riemann
integrals, and f ′1 and g′1 are in L2.

It will prove convenient to work with (f(x), g(x)) = 1
2(g1(x2 ) + f1(x2 ), g1(x2 )− f1(x2 )):

f(y) =
1

2
k(
y

2
) +

1

2

∫ ∞

y/2

(
J0(
√
y(2x− y))−

√
y

2x− yJ1(
√
y(2x− y))

)
k(x) dx (20a)

g(y) =
1

2
k(
y

2
)− 1

2

∫ ∞

y/2

(
J0(
√
y(2x− y)) +

√
y

2x− yJ1(
√
y(2x− y))

)
k(x) dx (20b)

k(x) = f(2x) +
1

2

∫ 2x

0

(
J0(
√
y(2x− y))−

√
y

2x− yJ1(
√
y(2x− y))

)
f(y) dy

+ g(2x)− 1

2

∫ 2x

0

(
J0(
√
y(2x− y)) +

√
y

2x− yJ1(
√
y(2x− y))

)
g(y) dy (20c)

∫ ∞

0
|k(x)|2 dx =

∫ ∞

0
|f(y)|2 + |g(y)|2 dy (20d)
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The H transform on k acts as (f, g) 7→ (f,−g). The pair (k,H(k)) identically vanishes on (0, a)
if and only if the pair (f, g) identically vanishes on (0, 2a). The structure of the formulas is more
apparent after observing (x, y > 0):

∂

∂x

(1

2
J0(
√
y(2x− y))10<y<2x(y)

)
= δ2x(y)− 1

2

√
y

2x− yJ1(
√
y(2x− y))10<y<2x(y) (21)

In this section I shall prove the existence of an isometric expansion k ↔ (f, g) having the stated
support properties and relation to the H-transform; that this construction does give the equations
(20a), (20b), (20c), will only be established in the last section (9) of the paper. The method followed
in this section coincides partly with the one of V. Rovnyak [28]; we try to produce the most direct
arguments, using the commonly known facts on Hardy spaces. The reader only interested in
Theorem 1 is invited after having read the present section to then jump directly to section 9 for
the conclusion of the proof.

To a function k ∈ L2(0,∞; dx) we associate the analytic function

k̃(λ) =

∫ ∞

0
eiλxk(x) dx (=(λ) > 0) (22)

with boundary values for λ ∈ R again written k̃(λ), which defines an element of L2(R, dλ2π ), the

assignment k 7→ k̃ being unitary from L2(0,∞; dx) onto H2(=(λ > 0), dλ2π ). Next we have the

conformal equivalence and its associated unitary map from H2(=(λ > 0), dλ2π ) to H2(|w| < 1, dθ2π ):

w =
λ− i
λ+ i

K(w) =
1√
2

λ+ i

i
k̃(λ) (23)

It is well known that this indeed unitarily identifies the two Hardy spaces. With k0(x) = e−x,
k̃0(λ) = i

λ+i , K0(w) = 1√
2
, and ‖k0‖2 =

∫∞
0 e−2xdx = 1

2 = ‖K0‖2. The functions k̃n(λ) = (λ−iλ+i)
n i
λ+i

correspond to Kn(w) = 1√
2
wn. To obtain explicitely the orthogonal basis (kn)n≥0, we first observe

that w = 1− 2 i
λ+i , so as a unitary operator it acts as:

w · k(x) = k(x)− 2

∫ x

0
e−(x−y)k(y) dy = k(x)− e−x2

∫ x

0
eyk(y) dy (24)

Writing kn(x) = Pn(x)e−x we thus obtain Pn+1(x) = Pn(x)− 2
∫ x

0 Pn(y) dy:

Pn(x) =

(
1− 2

∫ x

0

)n
· 1 =

n∑

j=0

(
n

j

)
(−2x)j

j!
(25)

So as is well-known Pn(x) = L
(0)
n (2x) (in the notation of [31, §5]) where the Laguerre polynomials

L
(0)
n (x) are an orthonormal system for the weight e−xdx on (0,∞).

One of the most common manner to be led to the H-transform is to define it from the two-
dimensional Fourier transform as:

H(f)(
1

2
r2) =

1

2π

∫∫
ei(x1y1+x2y2)f(

y2
1 + y2

2

2
)dy1dy2 =

∫ ∞

0

(∫ 2π

0
eirs cos θ dθ

2π

)
f(

1

2
s2)sds

H(f)(
1

2
r2) =

∫ ∞

0
J0(rs)f(

1

2
s2) sds r2 = x2

1 + x2
2, s

2 = y2
1 + y2

2

(26)
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which proves its unitarity, self-adjointness, and self-reciprocal character and the fact that it has
e−x has self-reciprocal function. The direct verification of H(k0) = k0 is immediate: H(k0)(x) =∫∞

0 J0(2
√
xy)e−y dy =

∑∞
n=0

(−1)n

n!2
xn
∫∞

0 yne−y dy = e−x. Then, H(e−tx) = t−1e−
x
t for each t > 0.

So
∫∞

0 e−txH(k)(x) dx = t−1
∫∞

0 e−
1
t
xk(x) dx hence:

∀k ∈ L2(0,∞; dx) H̃(k)(λ) =
i

λ
k̃(
−1

λ
) (27)

With the notation H(K) for the function in H2(|w| < 1) corresponding to H(k), we obtain from
(23), (27), an extremely simple result:8

H(K)(w) = K(−w) (28)

This obviously leads us to associate to K(w) =
∑∞

n=0 cnw
n the functions:

F (w) :=
∞∑

n=0

c2nw
n (29a)

G(w) :=
∞∑

n=0

c2n+1w
n (29b)

K(w) = F (w2) + wG(w2) (29c)

and to k the functions f and g in L2(0,+∞; dx) corresponding to F and G. Certainly, ‖k‖2 =
‖f‖2 + ‖g‖2, and the assignment of (f, g) to k is an isometric identification. Furthermore, certainly
the H transform acts in this picture as (f, g) 7→ (f,−g). Let us now check the support properties.
Let α(m) be the leftmost point of the (essential) support of a given m ∈ L2(0,∞; dx). As is
well-known,

−α(m) = lim sup
t→+∞

1

t
log |m̃(it)| , (30)

If w corresponds to λ via (23) then w2 corresponds to 1
2(λ − 1

λ), so if to a function f with corre-
sponding F (w) we associate the function ψ(f) ∈ L2(0,∞; dx) which corresponds to F (w2),

(t+ 1)ψ̃(f)(i t) = (
t+ 1

t

2
+ 1)f̃(i

t+ 1
t

2
) , (31)

then we have the identity:

α(ψ(f)) =
1

2
α(f) (32)

Returning to F (resp. f) and G (resp. g) associated via (29a), (29b), to K (resp. k) we thus have
k = ψ(f) + w · ψ(g), H(k) = ψ(f) − w · ψ(g), hence if the pair (f, g) vanishes on (0, 2a) then the
pair (k,H(k)) vanishes on (0, a) (clearly the unitary operator of multiplication by w = λ−i

λ+i does not
affect α(m).) Conversely, as α(f) = 2α(k +H(k)) and α(g) = 2α(k −H(k)), if the pair (k,H(k))
vanishes on (0, a) then the pair (f, g) vanishes on (0, 2a).

We have thus established the existence of an isometric expansion, its support properties, and
its relation to the H-transform. That there is indeed compatibility of (20a) and (20b) with (29a)
and (29b), and with (20c), will be established in the last section (9) of the paper with a direct
study of (31). In the meantime equations (20a), (20b), (20c) and (20d) will have been confirmed
in another manner. Yet another proof of the isometric expansion has been given in [9].

8we also take note of the operator identity H · w = −w · H.
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3 Tempered distributions and their H and Mellin transforms

Any distribution D on R has a primitive. If the closed support of D is included in [0,+∞), then
it has a unique primitive, which we will denote

∫ x
0 D(x) dx, or, more safely, D(−1), which also has

its support in [0,+∞). The temperedness of such a D is equivalent to the fact that D(−N) for
N � 0 is a continuous function with polynomial growth. With D(−N)(x) = (1 + x2)Mg(N,M)(x),

M � 0, we can express D as P (x, ddx)(g) where P is a polynomial and g ∈ L2(0,∞; dx). Conversely
any such expression is a tempered distribution vanishing in (−∞, 0). The Fourier transforms of
such tempered distributions D̃(λ) appear thus as the boundary values of Q( d

dλ , λ)f(λ) where Q
are polynomials and the f ’s belong to H2(=(λ) > 0). As taking primitives is allowed we know
without further ado that this class of analytic functions is the same thing as the space of functions
g(λ) = R( d

dλ , λ, λ
−1)f(λ), R a polynomial and f ∈ H2. It is thus clearly left stable by the operation:

g 7→ H(g)(λ) :=
i

λ
g(
−1

λ
) (=(λ) > 0) (33)

which will serve to define the action of H on tempered distributions with support in [0,+∞).
Let us also use (33), where now λ ∈ R, to define H as a unitary operator on L2(−∞,+∞; dx).

It will anti-commute with f(x)→ f(−x) so:

H(f)(x) =

∫ ∞

−∞
(J0(2

√
xy)1x>0(x)1y>0(y)− J0(2

√
xy)1x<0(x)1y<0(y))f(y) dy (34)

Useful operator identities are easily established from (33):

x
d

dx
· H = −H · d

dx
x and

d

dx
x · H = −H · x d

dx
(35a)

d

dx
· H = H ·

∫ x

0
and

∫ x

0
·H = H · d

dx
(35b)

x · H = −H · d
dx

x
d

dx
and H · x = − d

dx
x
d

dx
· H (35c)

It is important that d
dx is always taken in the distribution sense. It would actually be possible

to define the action of H on distributions supported in [0,+∞) without mention of the Fourier
transform, because these identities uniquely determine H(D) if D is written ( d

dx)N (1+x)MgN,M (x)
with gN,M ∈ L2(0,∞; dx). But the proof needs some organizing then as it is necessary to check
independence from the choice of N and M , and also to establish afterwards all identities above. So
(33) provides the easiest road. Still, in this context, let us mention the following which relates to
the restriction of H(D) to (0,+∞):

Lemma 2. Let k be smooth on R with compact support in [0,+∞). Then H(k) is the restriction
to [0,+∞) of an entire function γ which has Schwartz decrease as x → +∞. For any tempered
distribution D with support in [0,+∞), there holds

∫ ∞

0
H(D)(x)k(x) dx =

∫ ∞

0
D(x)γ(x) dx , (36)

where in the right hand side in fact one has
∫∞
−ε D(x)γ(x)θ(x) dx where the smooth function θ is 1

for x ≥ − ε
3 and 0 for x ≤ − ε

2 and is otherwise arbitrary (as is ε).
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Let us suppose k = 0 for x > B. Defining:

γ(x) =

∫ B

0
J0(2
√
xy) k(y) dy (37)

we obtain an entire function and, according to our definitions, H(k)(x) = γ(x)1x>0(x) as a distribu-
tion or a square-integrable function. Using (35c) (H = − 1

xH· ddx x d
dx for x > 0) and bounding J0 by

1 we see (induction) that γ is O(x−N ) for any N as x→ +∞ , and using (35a) ( d
dx ·H = − 1

xH· ddxx
for x > 0) the same applies to its derivative and also to its higher derivatives. So it is of the
Schwartz class for x→ +∞.

Replacing D by H(D) in (36) it will be more convenient to prove:

∫ ∞

0
D(x)k(x) dx =

∫ ∞

0
H(D)(x)γ(x) dx (38)

If (38) holds for D (and all k’s) then < D′, k >= − < D, k′ >= − < H(D),−θ(x)
∫∞
x γ(y)dy > (ob-

serve that
∫ x

0 γ(y) dy = H(k′)(x) vanishes at +∞) so< D′, k >= + <
∫ x

0 H(D), θγ >=< H(D′), θγ >
hence (38) holds as well for D′ (and all k’s). So we may assume D to be a continuous function of
polynomial growth. It is also checked using (35c) that if (38) holds for D it holds for xD. So we
may reduce to D being square-integrable, and the statement then follows from the self-adjointness
of H on L2 (or we reduce to Fubini).

The behavior of H with respect to the translations τa : f(x) 7→ f(x − a) is important. For
f ∈ L2(R; dx) the value of a is arbitrary and we can define

τ#
a := H τaH (39a)

τ̃a(f)(λ) = eiaλf̃(λ) (39b)

τ̃#
a (f)(λ) = eia

−1
λ f̃(λ) (39c)

We observe the remarkable commutation relations (which would fail for the cosine or sine trans-
forms):

∀a, b τaτ
#
b = τ#

b τa (40)

For a distribution D the action of τ#
a is here defined only for a ≥ −α(H(D)), where α(E) is the

leftmost point of the closed support of the distribution E. On this topic from the validity of (30)
when f ∈ L2(0,∞; dx), and invariance of α under derivation9, integration, and multiplication by
x, one has:

−α(E) = lim sup
t→+∞

1

t
log |Ẽ(it)| (41)

We thus have the property, not shared by the cosine or sine transforms:

a ≥ −α(H(D)) =⇒ α(τ#
a (D)) = α(D) (42)

We now consider D with α(D) > 0 and α(H(D)) > 0 and prove that its Mellin transform is
an entire function with trivial zeros at 0, −1, −2, . . . , following the method of regularization by
multiplicative convolution and co-Poisson intertwining from [8]. The other, very classical in spirit,
proof shall be presented later. The latter method is shorter but the former provides complementary
information.

9It is important in order to avoid a possible confusion to insist on the fact that d
dx

is always taken in the distribution
sense so for example d

dx
1x>0 = δ(x) indeed has the leftmost point of its support not affected by d

dx
.
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In [8, §4.A] the detailed explanations relative to the notion of multiplicative convolution are
given:

(g ∗D)(x) “ = ”

∫

R
g(t)D(

x

t
)
dt

|t| , (43)

where we will in fact always take g to have compact support in (0,+∞). It is observed that

g ∗ xD = x(
g

x
∗D) (g ∗D)′ =

g

x
∗D′ (44)

The notion of right Mellin transform
∫∞

0 D(x)x−sdx is developed in [8, §4.C], for D with support
in [a,+∞), a > 0:

D̂(s) = s(s+ 1) · · · (s+N − 1)D̂(−N)(s+N) , (45)

where N � 0. The meaning of D̂ is as the maximal possible analytic continuation to a half-plane
<(s) > σ, where σ is as to the left as is possible. The notion is extended10 in [8, §4.F] to the case
where the restriction of D to (−a, a) is “quasi-homogeneous”. For example, if D|(−a,a) = 10<x<a

(resp. δ), then D̂ is defined as D̂1 with D1 = D−10<x<∞ (resp. D−δ.) Then, also in the extended
case, the following holds:

ĝ ∗D(s) = ĝ(s)D̂(s) (46)

where g in an integrable function with compact support in (0,∞) and ĝ(s) is the entire function∫∞
0 g(t)t−s dt. We then have the following theorem:

Theorem 3. Let D a tempered distribution with support in [a,+∞), a > 0 and such that H(D)
also has a positive leftmost point of support. Let g be a smooth function with compact support in
(0,∞). Then the multiplicative convolution g ∗D belongs to the Schwartz class.

This is the analog of [8, Thm 4.29]. The function k(t) = (Ig)(t) = g(1/t)
t is defined and it is

written as k = H(γ1x>0) where γ is the entire function, of Schwartz decrease at +∞ such that
H(k) = γ · 1x>0. Then it is observed that

t > 0 =⇒ (g ∗D)(t) =

∫ ∞

0
D(x)

k(x/t)

t
dx =

∫ ∞

0
H(D)(x)γ(tx) dx (47)

We have used Lemma 2. Then the Schwartz decrease of
∫∞

0 H(D)(x)γ(tx) dx as t → +∞ is
established as is done at the end of the proof of [8, Thm 4.29], integrating by parts enough times to
transform H(D) into a continuous function of polynomial growth, identically zero on [0, c], c > 0.

Theorem 4. Let D a tempered distribution with a positive lefmost point of support and such that
H(D) also has a positive leftmost point of support. Then D̂(s) and Γ(s)D̂(s) are entire functions
and:

Γ(s)D̂(s) = Γ(1− s)Ĥ(D)(1− s) (48)

We first establish:

Theorem 5 (“co-Poisson intertwining”). Let D be a tempered distribution supported in [0,+∞)

and let g be an integrable function with compact support in (0,∞). Then, with (Ig)(t) = g(1/t)
t :

H(g ∗D) = (Ig) ∗ H(D) (49)

10if D is near the origin a function with an analytic character, then straightforward elementary arguments allow a
complementary discussion. However if D is just an element of L2(0,∞; dx) then D̂ is a square-integrable function on
the critical line, and nothing more nor less.
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Let us first suppose that D is an L2 function. In that case, we will use the Mellin-Plancherel

transform f 7→ f̂(s) =
∫∞

0 f(t)t−s dt, for f square integrable and <(s) = 1
2 . Then ĝ ∗ f is, changing

variables, the Fourier transform of an additive convolution where one of the two has compact
support, well known to be the product ĝ · f̂ . We need also to understand the Mellin transform

of H(f). Let us suppose ft(x) = exp(−tx). Then H(ft) = 1
t f 1

t
has Mellin transform Ĥ(ft)(s) =

t−sΓ(1− s) and f̂t(s) = ts−1Γ(1− s), so we have the identity for such f ’s:

Ĥ(f)(s) =
Γ(1− s)

Γ(s)
f̂(1− s) (50)

The linear combinations of the ft’s are dense in L2, so (49) holds for all f ’s as an identity of
square integrable functions on the critical line. We are now in a position to check the intertwining:

Ĥ(g ∗ f)(s) = Γ(1−s)
Γ(s) ĝ(1− s)f̂(1− s) = Îg(s)Ĥ(f)(s) = ̂Ig ∗ H(f)(s).

For the case of an arbitrary distribution it will then be sufficient to check that if (49) holds for
D it holds for xD and for D′. This is easily done using (44). We have g ∗ (D′) = (xg ∗ D)′, so
H(g ∗D′) =

∫ x
0 H(xg ∗D) =

∫ x
0 ( Igx ∗H(D)) = Ig ∗ (

∫ x
0 H(D)) = Ig ∗H(D′). A similar proof is done

for xD. This completes the proof of the intertwining.
The theorem 4 is then established as is [8, Thm 4.30]. We pick an arbitrary g smooth with

compact support in (0,∞). We know by theorem 3 that g ∗D is a Schwartz function as x→ +∞,

and certainly it vanishes identically in a neighborhood of the origin, so ĝ ∗D(s) = ĝ(s)D̂(s) is an
entire function. So D̂(s) is a meromorphic function in the entire complex plane, in fact an entire
function as g is arbitrary. We then use the intertwining and (50) for square integrable functions.

This gives ĝ(1−s)Ĥ(D)(s) = ̂Ig ∗ H(D)(s) = ̂H(g ∗D)(s) = Γ(1−s)
Γ(s) ĝ(1−s)D̂(1−s). Hence, indeed,

after replacing s by 1− s:
Γ(s)D̂(s) = Γ(1− s)Ĥ(D)(1− s) (51)

The left-hand side may have poles only at 0, −1, . . . , and the right-hand side only at 1, 2, . . . . So
both sides are entire functions and D̂(s) has trivial zeros at 0, −1, −2, . . .

We now give another proof of Theorem 4, which is more classical, as it is the descendant of
the second of Riemann’s proof, and is the familiar one from the theory of theory of L-series and
modular functions. The existence of two complementary proofs is instructive, as it helps to better
understand the rôle of the right Mellin transform

∫∞
0 f(x)x−s dx vs. the left Mellin transform∫∞

0 θ(it)ts−1 dt.

To the distribution D we associate its “theta” function11 θD(λ) = D̃(λ) =
∫∞

0 eiλxD(x) dx,
which is an analytic function for =(λ) > 0 12. Right from the beginning we have:

θH(D)(it) =
1

t
θD(

i

t
) (52)

If the leftmost point of the support of D is positive then θD(it) has exponential decrease as t→ +∞
and

∫∞
1 θD(it)ts−1 dt is an entire function. If also the leftmost point of support of H(D) is positive

then θH(D)(it) has exponential decrease as t→ +∞ and
∫ 1

0 θD(it)ts−1 dt =
∫∞

1 θH(D)(it)t
−s dt is an

entire function. So, under the support property considered in Theorem 4 D(s) :=
∫∞

0 θD(it)ts−1 dt
is indeed an entire function, and the functional equation is

D(s) = D∗(1− s) (53)

11the author hopes to be forgiven this temporary terminology in a situation where only the behavior under λ 7→ −1
λ

is at work.
12we adopt the usual notation, and consider θD as a function of it rather than t.
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with D∗(s) =
∫∞

0 θH(D)(t)t
s−1 dt.

To conclude we also need to establish:

D(s) = Γ(s)D̂(s) (54)

We shall prove this for <(s) � 0 under the hypothesis that D has support in [a,+∞), a > 0 (no
hypothesis on H(D)). In that case, as θD(it) is O(t−N ) for a certain N as t→ 0 (t > 0), and is of
exponential decrease as t→ +∞, we can define D(s) =

∫∞
0 θD(it)ts−1 dt as an analytic function for

<(s)� 0. Let us suppose that D is a continuous function which is O(x−2) as x→ +∞. Then, for,
<(s) > 0, the identity (54) holds as an application of the Fubini theorem. We then apply our usual
method to check that if (54) holds for D it also holds for xD and for D′. For this, obviously we

need things such as D̂′(s) = sD̂(s+ 1) [8, 4.15] and x̂D(s) = D̂(s− 1), the formulas θD′ = −iλθD,
θxD = −i ∂∂λθD, and Γ(s+ 1) = sΓ(s). The verifications are then straightforward.

In summary we have seen how the support property for D and H(D) is related in two comple-
mentary manners to the functional equation, one using the right Mellin transform D̂(s) of D and
the idea of co-Poisson, the other using the left Mellin transform D(s) of the “theta” function θD
associated to D as an analytic function on the upper half-plane and the behavior of θD(it) under
t 7→ 1

t . It is possible to push further the analysis and to characterize the class of entire functions

D(s) = Γ(s)D̂(s), as has been done in [8] in the case of the cosine and sine transforms. It is also
explained in [8] how the discussion extends to allow finitely many poles. The proofs and statements
given there are easily adapted to the case of the H transform. Only the case of poles at 1 and 0
will be needed here and this corresponds, either to the condition that D and H(D) both restrict in
(−a, a) for some a > 0 to multiples of the Dirac delta function, or, that they are both constant in
[0, a) for some a > 0. We recall that the Mellin transform D̂(s) is defined in such a manner, that
it is not affected from either substracting δ or 1x>0 from D.

4 A group of distributions and related integral formulas

We now derive some integral identities which will prove central. The identities will be re-obtained
later as the outcome of a less direct path. We are interested in the tempered distribution ga(x)

whose Fourier transform is exp(ia−1
λ ). Indeed τ#

a (f) (equation (39a)) is the additive convolution of
f with ga: we note that ga differs from δ(x) by a square integrable function as 1− exp(−iaλ−1) =

O|λ|→∞(|λ|−1); so there is a convolution formula τ#
a (f) = f − fa ∗ f for a certain square integrable

function fa. For f ∈ L2, the convolution fa ∗ f as the Fourier transform of an L1-function is
continuous on R. Starting from the identity exp(ia−1

λ ) = −iλ iλ exp(ia−1
λ ) we identify ga for a ≥ 0

as ∂
∂xHδa. It is important that ∂

∂x is taken in the distribution sense. So we have, simply:

ga(x) = δ(x)− aJ1(2
√
ax)√

ax
1x>0(x) (a ≥ 0) (55)

If a < 0 then ga(x) = g−a(−x), fa(x) = f−a(−x). So:

g−a(x) = δ(x)− aJ1(2
√−ax)√−ax 1x<0(x) (−a ≤ 0) (56)

The group property under the additive convolution ga ∗ gb = ga+b leads to remarkable integral
identities fa+b = fa+fb−fa∗fb involving the Bessel functions. The pointwise validity is guaranteed

by continuity; the Plancherel identity confirms the identity, where fa(x) = aJ1(2
√
ax)√

ax
1x>0(x) for

a ≥ 0 and f−a(x) = fa(−x):
fa+b = fa + fb − fa ∗ fb (57)

J. Burnol Scattering, determinants, hyperfunctions in relation to Γ(1−s)
Γ(s)

Rejecta Mathematica Vol. 2, No. 1, June 2011

This work is published under the Creative Commons Attribution-NonCommercial License. http://creativecommons.org/licenses/by-nc/2.5/legalcode

74

http://math.rejecta.org
http://creativecommons.org/licenses/by-nc/2.5/legalcode


At x = 0 the pointwise identity is obtained by continuity from either x > 0 or x < 0. We have
essentially two cases: ga ∗ gb for a, b ≥ 0 and ga ∗ g−b for a ≥ b ≥ 0. The following is obtained:

Proposition 6. Let a ≥ b ≥ 0 and x ≥ 0. There holds:

(a+ b)J1(2
√

(a+ b)x)√
(a+ b)x

=
aJ1(2

√
ax)√

ax
+
bJ1(2

√
bx)√

bx
−
∫ x

0

aJ1(2
√
ay)

√
ay

bJ1(2
√
b(x− y))√

b(x− y)
dy (58a)

(a− b)J1(2
√

(a− b)x)√
(a− b)x

=
aJ1(2

√
ax)√

ax
−
∫ ∞

x

aJ1(2
√
ay)

√
ay

bJ1(2
√
b(y − x))√

b(y − x)
dy (58b)

0 =
bJ1(2

√
bx)√

bx
−
∫ ∞

0

aJ1(2
√
ay)

√
ay

bJ1(2
√
b(y + x))√

b(y + x)
dy (58c)

Exchanging a and b and changing variables we combine (58b) and (58c) into one single equation
for x ≥ 0 and a, b ≥ 0:

(a− b)J1(2
√

(a− b)x)√
(a− b)x

1a−b≥0(a− b) =
aJ1(2

√
ax)√

ax
−
∫ ∞

0

aJ1(2
√
a(y + x))√

a(y + x)

bJ1(2
√
by)√

by
dy (59)

The formula for x = 0 in (59) is obtained by continuity. It is equivalent to

∫ ∞

0
J1(u)J1(cu)

du

u
=

1

2
min(c,

1

c
) (c > 0) (60)

which is a very special case of formulas of Weber, Sonine and Schafheitlin ([33, 13.42.(1)]). Another
interesting special case of (59) is for a = b. The formula becomes

J1(2
√
x)√

x
=

∫ ∞

0

J1(2
√
y)

√
y

J1(2
√
x+ y)√

x+ y
dy (61)

which is equivalent to a special case of a formula of Sonine ([33, 13.48.(12)]).

We already mentioned the equation ∂2

∂u∂vJ0(2
√
uv) = −J0(2

√
uv). New identities are obtained

from (59) or (58a) after taking either the a or the b derivative. We investigate no further (59) as the
corresponding semi-convergent integrals, in a form or another, are certainly among the formulas of
[33, §13]. Let us rather focus more closely on the case a, b ≥ 0 ((58a).) We have a function which
is entire in a, b, and x and the identity holds for all complex values of a, b, and x. Let us take the
derivative with respect to a:

J0(2
√

(a+ b)x) = J0(2
√
ax)−

∫ x

0
J0(2
√
ay)

bJ1(2
√
b(x− y))√

b(x− y)
dy (62)

We replace b by −b and then set x = b. This gives:

I0(2
√
b(b− a)) = J0(2

√
ba) +

∫ b

0
J0(2
√
ay)

bI1(2
√
b(b− y))√

b(b− y)
dy (63)

We take the derivative of (62) with respect to b:

−xJ1(2
√

(a+ b)x)√
(a+ b)x

= −
∫ x

0
J0(2
√
ay)J0(2

√
b(x− y)) dy (64)
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Then we replace b by −b and set x = b:

bI1(2
√
b(b− a))√

b(b− a)
=

∫ b

0
J0(2
√
ay)I0(2

√
b(b− y)) dy (65)

Combining (63) and (65) by addition and substraction we discover that we have solved certain
integral equations:

φ+
b (x) = I0(2

√
b(b− x))− bI1(2

√
b(b− x))√

b(b− x)
= (1 +

∂

∂x
)I0(2

√
b(b− x)) (66a)

φ−b (x) = I0(2
√
b(b− x)) +

bI1(2
√
b(b− x))√

b(b− x)
= (1− ∂

∂x
)I0(2

√
b(b− x)) (66b)

φ+
b (x) +

∫ b

0
J0(2
√
xy)φ+

b (y) dy = J0(2
√
bx) (66c)

φ−b (x)−
∫ b

0
J0(2
√
xy)φ−b (y) dy = J0(2

√
bx) (66d)

The significance will appear later in the paper and we leave the matter here. The method was
devised after the importance of solving equations (66c) and (66d) had emerged and after the
solutions (66a) and (66b) had been obtained as the outcome of a more indirect path. Of course,
direct verification by replacement of the Bessel functions by their series expansions is possible and
easy.

5 Orthogonal projections and Hilbert space evaluators

Let a > 0 and let Pa be the orthogonal projection on L2(0, a; dx) and Qa = HPaH the orthogonal
projection on H(L2(0, a; dx)) and let Ka ⊂ L2(0,∞; dx) be the Hilbert space of square integrable
functions f such that both f and H(f) have their supports in [a,∞). Also we shall write Ha =
PaHPa. Also we shall very often use Da = H2

a = PaHPaHPa. Using:

J0(2
√
xy) =

∞∑

n=0

(−1)n
xnyn

n!2
, (67)

we exhibit Ha = PaHPa as a limit in operator norm of finite rank operators so PaHPa is a compact
(self-adjoint) operator. It is not possible for a non zero f ∈ L2(0, a; dx) to be such that ‖Ha(f)‖ =
‖f‖, as this would imply that Ha(f) vanishes identically for x > a, but Ha(f) is an entire function.
So the operator norm of Ha is strictly less than one, and 1 ±Ha as well as 1 −Da are invertible.
We consider the equation

φ = u+H(v) u, v ∈ L2(0, a; dx) (68)

Hence:

u+Ha(v) = Pa(φ) (69a)

Ha(u) + v = Pa(H(φ)) (69b)

u = (1−Da)
−1(Pa(φ)−HaPaH(φ)) (69c)

v = (1−Da)
−1(−HaPa(φ) + PaH(φ)) (69d)
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Then if φn = un +H(vn) is L2-convergent, (un) and (vn) will be convergent, and the vector space
sum L2(0, a; dx)+H(L2(0, a; dx)) is closed. Its elements are analytic functions for x > a so certainly
this is a proper subspace of L2. Hence we obtain that each Ka is not reduced to {0} and

K⊥a = L2(0, a; dx) +H(L2(0, a; dx)) (70)

We also mention that ∪a>0Ka is dense in but not equal to L2(0,∞; dx), more generally that ∪a>bKa

is dense in but not equal to Kb, and also obviously ∩a<∞Ka = {0}, ∩a<bKa = Kb.
In this section a > 0 will be fixed (all defined quantities and functions will depend on a, but

this will not always be explicitely indicated.) We shall be occupied with understanding the vectors
Xa
s ∈ Ka such that

∀f ∈ Ka

∫ ∞

a
f(x)Xa

s (x) dx = f̂(s) =

∫ ∞

a
f(x)x−s dx (71)

and in particular we are interested in computing

Xa(s, z) =

∫ ∞

a
Xa
s (x)Xa

z (x) dx (72)

As a is fixed here, we shall drop the superscript a to lighten the notation. For the time being we
shall restrict to <(s) > 1

2 and we define Xs to be the orthogonal projection to Ka of 1x>a(x)x−s.
As a preliminary to this study we need to say a few words regarding:

gs(x) := H(1x>a(x)x−s) =

∫ ∞

a
J0(2
√
xy)y−s dy (73)

The integral is absolutely convergent for <(s) > 3
4 , semi-convergent for <(s) > 1

4 , and gs is defined
by the equation as an L2 function for <(s) > 1

2 (it will prove to be entire in s for each x > 0). We
need the following identity, which shows also that gs(x) is analytic in x > 0:

gs(x) = χ(s)xs−1 −
∫ a

0
J0(2
√
xy)y−s dy = χ(s)xs−1 −

∞∑

n=0

(−1)n
xn an+1−s

n!2(n+ 1− s) (74)

This is obtained first in the range 3
4 < <(s) < 1:

∫∞
a J0(2

√
xy)y−s dy = xs−1

∫∞
ax J0(2

√
y)y−s dy =

xs−1
(
χ(s)−

∫ ax
0 J0(2

√
y)y−s dy

)
= xs−1χ(s) −

∫ a
0 J0(2

√
xy)y−s dy. The poles at s = 1, s = 2,

. . . are only apparent. The identity is valid by analytic continuation in the entire plane <(s) > 1
2 .

For each given x > 0 we have in fact an entire function of s ∈ C. But we are here more interested
in gs as a function of x and we indeed see that it is analytic in C\]−∞, 0] (it is an entire function
of x if s ∈ −N). 13

There are unique vectors us, vs in L2(0, a; dx) such that

1x>a(x)x−s = Xs(x) + us(x) +H(vs)(x) (75)

and they are the solutions to the system of equations:

us +Ha(vs) = 0 (76a)

Ha(us) + vs = Pa(gs) (76b)

13For some other transforms k(xy), such as the cosine transform, the argument must be slightly modified in order
to accomodate the fact

∫∞
0
k(y)y−s dy has no range of absolute convergence.
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From (76a) we see that us is in fact the restriction to (0, a) of an entire funtion, and from (76b)
that vs is the restriction to (0, a) of a function which is analytic in C\]−∞, 0]. Redefining us and
vs to now refer to these analytic functions their defining equations become (on (0,+∞)):

us +HPa(vs) = 0 (77a)

HPa(us) + vs = gs (77b)

and (75) becomes (we set Xs(a) = Xs(a+)):

1x≥a(x)x−s = Xs(x) + 10<x<a(x)us(x) +HPa(vs)(x) (78a)

1x≥a(x)x−s = Xs(x)− 1x≥a(x)us(x) (78b)

Xs(x) = 1x≥a(x)(x−s + us(x)) (78c)

The key to the next steps will be the idea to investigate the distribution (x d
dx + s)Xs on the

(positive) real line. Let Ds be x d
dx + s. There holds:

DsH = −HD1−s (79)

To compute d
dxPa(vs) we first suppose <(s) > 1, so (we know the behavior as x → 0 from (74))

d
dxPa(vs) = Pa(v

′
s) − vs(a)δa(x) and x d

dxPa(vs) = Pa(xv
′
s) − avs(a)δa(x). This remains true for

<(s) > 1
2 . Applying Ds to (77a) thus gives Ds(us) −H (PaD1−s(vs)− avs(a)δa(x)). We similarly

apply D1−s to (77b) and obtain the following system:

Ds(us)(x)− (HPaD1−svs)(x) = −avs(a)J0(2
√
ax) (80a)

−(HPaDsus)(x) +D1−s(vs)(x) = (D1−sgs)(x)− aus(a)J0(2
√
ax) (80b)

From (73), we have D1−sgs = −HDs(1x>ax
−s) = −H(a1−sδa(x)) = −a1−sJ0(2

√
ax). Let us define

Ja0 (x) = J0(2
√
ax) (81)

We have proven:

+Dsus −HPaD1−svs = −avs(a)Ja0 (82a)

−HPaDsus +D1−svs = −a(a−s + us(a))Ja0 (82b)

Restricting to the interval (0, a) and solving, we find:

PaDsus = −a(1−Da)
−1(vs(a)Ja0 + (a−s + us(a))HaJ

a
0 ) (83a)

PaD1−svs = −a(1−Da)
−1((a−s + us(a))Ja0 + vs(a)HaJ

a
0 ) (83b)

It is advantageous at this stage to define φ+
a and φ−a to be the solutions of the equations (in

L2(0, a; dx)):

φ+
a +Haφ

+
a = Ja0 (84a)

φ−a −Haφ
−
a = Ja0 (84b)

We already know from (66a) and (66b) exactly what φ+
a and φ−a are (in this special case of the H

transform), but we shall proceed as if we didn’t. We see from (84a), (84b) that φ+
a and φ−a are

entire functions, and we can rewrite the system as:14

φ+
a +HPaφ+

a = Ja0 (85a)

φ−a −HPaφ−a = Ja0 (85b)

14in conformity with our conventions, these are identities on (0,∞); to see them as identities on C one must read∫ a
0
J0(2
√
xy)φ+

a (y) dy rather than (HPaφ+
a )(x).
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We observe the identities:

(1−Da)
−1Ja0 = Pa

φ+
a + φ−a

2
(86a)

(1−Da)
−1HaJ

a
0 = Pa

−φ+
a + φ−a

2
(86b)

So (83a) and (83b) become

Dsus = +a
a−s + us(a)− vs(a)

2
φ+
a − a

a−s + us(a) + vs(a)

2
φ−a (87a)

D1−svs = −aa
−s + us(a)− vs(a)

2
φ+
a − a

a−s + us(a) + vs(a)

2
φ−a (87b)

From (87a) we compute successively (again, these are identities on (0,+∞)):

HPaDsus = a
a−s + us(a)− vs(a)

2
(Ja0 − φ+

a )− aa
−s + us(a) + vs(a)

2
(−Ja0 + φ−a ) (88)

PaDsus = a
a−s + us(a)− vs(a)

2
(δa −Hφ+

a )− aa
−s + us(a) + vs(a)

2
(−δa +Hφ−a ) (89)

In (89), Hφ+
a should perhaps be more precisely written as H(φ+

a 1x>0). From (85a) we know that
φ+
a 1x>0 is tempered as a distribution. From (78c) we compute DsXs = 1x>aDs(us) + a(a−s +
us(a))δa(x) = Dsus − PaDsus + a(a−s + us(a))δa(x). From (87a) and(89) then follows:

DsXs = +a
a−s + us(a)− vs(a)

2
(φ+
a +Hφ+

a − δa)− a
a−s + us(a) + vs(a)

2
(φ−a −Hφ−a + δa)

+a(a−s + us(a))δa(x)

(90)

And the result of the computation is:

DsXs = +a
a−s + us(a)− vs(a)

2
(φ+
a +Hφ+

a ) + a
a−s + us(a) + vs(a)

2
(−φ−a +Hφ−a ) (91)

We then define the remarkable distributions:

Aa =

√
a

2
(φ+
a +Hφ+

a ) (92a)

−iBa =

√
a

2
(−φ−a +Hφ−a ) (92b)

Ea = Aa − iBa (92c)

From (84a) we observe that Aa has its support in [a,∞). Furthermore it is H invariant. Similarly,
−iBa, which is H anti invariant, also has its support in [a,+∞). We recover Aa and −iBa from
Ea through taking the invariant and anti-invariant parts. We may also rewrite DsXs as:

DsXs =
√
a(a−s + us(a))Ea −

√
a vs(a)HEa (93)

Some other manners of writing Aa and −iBa are useful: from (85a) Hφ+
a = δa − Paφ+

a and from
(85b) Hφ−a = δa + Paφ

−
a , so:

Aa =

√
a

2
(δa + φ+

a 1x>a) (94a)

−iBa =

√
a

2
(δa − φ−a 1x>a) (94b)
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And, we take also notice of the following definitions and identities:

ja =
√
a(δa − φ+

a 10<x<a) ja =
√
aHφ+

a Aa =
1

2
(ja +Hja) (95a)

−ika =
√
a(δa + φ−a 10<x<a) −ika =

√
aHφ−a Ba =

1

2
(ka −Hka) (95b)

From (85a) and (85b) we know that φ+
a and φ−a are bounded, so the right Mellin transforms are

defined directly for <(s) > 1 by:15

Âa(s) =

√
a

2

(
a−s +

∫ ∞

a
φ+
a (x)x−s dx

)
(96a)

−iB̂a(s) =

√
a

2

(
a−s −

∫ ∞

a
φ−a (x)x−s dx

)
(96b)

Êa(s) =
√
a
(
a−s +

1

2

∫ ∞

a
(φ+
a (x)− φ−a (x))x−s dx

)
(96c)

Ĥ(Ea)(s) =
√
a

1

2

∫ ∞

a
(φ+
a (x) + φ−a (x))x−s dx (96d)

From (85a) and (85b) we know that φ+
a −φ−a is square-integrable at +∞, so, using Hφ+

a = δa−Paφ+
a

and Hφ−a = δa + Paφ
−
a we compute:

∫ ∞

a
(φ+
a (x)− φ−a (x))x−s dx =

∫ ∞

0
(Hφ+

a −Hφ−a )gs(x) dx = −
∫ a

0
(φ+
a (x) + φ−a (x))gs(x) dx (97)

Then using (86a):

∫ a

0

φ+
a (x) + φ−a (x)

2
gs(x) dx =

∫ a

0
(1−Da)

−1(Ja0 )(x)gs(x) dx =

∫ a

0
Ja0 (x)((1−Da)

−1(gs))(x) dx

(98)
Comparing with (76a) and (76b) the right-most term of (98) may be written as

∫ a
0 J0(2

√
ax)vs(x) dx

which in turn we recognize from (77a) to be −us(a). We have thus proven the identity:

Êa(s) =
√
a(a−s + us(a)) (99)

In a similar manner we have:
∫ ∞

a

φ+
a (x) + φ−a (x)

2
x−s dx =

∫ ∞

a
J0(2
√
ax)x−s dx+

∫ a

0

−φ+
a (x) + φ−a (x)

2
gs(x) dx (100)

∫ a

0

−φ+
a (x) + φ−a (x)

2
gs(x) dx =

∫ a

0
((1−Da)

−1HaJ
a
0 )(x)gs(x) dx = −

∫ a

0
J0(2
√
ax)us(x) dx

= vs(a)− gs(a) = vs(a)−
∫ ∞

a
J0(2
√
ax)x−s dx

(101)

15the integral for Êa(s) is certainly absolutely convergent for <(s) > 1
2

as φ+
a − φ−a is square integrable on (0,∞),

and in fact it is absolutely convergent for <(s) > 1
4
. As we know already completely explicitely φ+

a and φ−a , we do not
pause on this here. A general argument suitable to establish in more general cases absolute convergence for <(s) > σ
for some σ < 1

2
will be given later.
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Âa(s) + iB̂a(s) = Ĥ(Ea)(s) =
√
a

∫ ∞

a

φ+
a (x) + φ−a (x)

2
x−s dx =

√
avs(a) (102)

Then, we obtain the reformulation of (93) as:

DsXs = Êa(s)Ea − Ĥ(Ea)(s)HEa (103)

And, noting D̂sXs(z) = (s+ z − 1)X̂s(z) = (s+ z − 1)
∫∞
a Xs(x)Xz(x) dx we are finally led to the

remarkable result:

Xa(s, z) =

∫ ∞

a
Xa
s (x)Xa

z (x) dx =
Êa(s)Êa(z)− Ĥ(Ea)(s)ĤEa(z)

s+ z − 1
(104)

This equation has been proven under the assumption <(s) > 1, and <(z) > 1
2 . To complete the

discussion we need to know that the evaluators f 7→ f̂(s), s ∈ C are indeed continuous linear
forms on Ka. For <(s) > 1

2 , we have f̂(s) =
∫∞
a f(x)x−s dx. For <(s) < 1

2 we have f̂(s) =
Γ(1−s)

Γ(s) Ĥ(f)(1 − s). For <(s) = 1
2 continuity follows by the Banach-Steinhaus theorem, and of

course more elementary proofs exist (as in [3] for the cosine or sine transform). So we do have
unique Hilbert space vectors Xa

s ∈ Ka such that ∀f ∈ Ka∀s ∈ C f̂(s) =
∫∞
a Xa

s (x)f(x) dx. Then
(104) holds throughout C× C by analytic continuation.

The vectors Xa
s are zero for s ∈ −N, and it is more precise to use vectors X as = Γ(s)Xa

s which
are non-zero for all s ∈ C. These vectors are the evaluators16 for f 7→ F(s), F(s) = Γ(s)f̂(s).
We recapitulate some of the results in the following theorem, whose analog for the cosine (or sine)
transform was given in [5] (up to changes of variables and notations, the first paragraph as well as
equation (108) are theorems from [1]; the equations (105), (106), (107) are our contributions. In
this specific case of H we shall later identify exactly φ+

a and φ−a and Ea and Ea. As we shall explain
the analog of the Ea-function in [1] has value 1 at s = 1

2 , and is not identical with the Ea here):

Theorem 7. For a given a > 0 let Ka be the Hilbert space of square integrable functions f(x) on
[a,+∞) whose H-transforms

∫∞
0 J0(2

√
xy)f(y) dy (in the L2-sense) again vanish for 0 < x < a.

The completed right Mellin transforms Γ(s)f̂(s) = Γ(s)
∫∞
a f(x)x−s dx are entire functions and

evaluations at s ∈ C are continuous linear forms.
Let X as for each s ∈ C be the unique vector in Ka such that ∀f ∈ Ka Γ(s)f̂(s) =

∫∞
a f(x)X as (x) dx.

Let φ+
a and φ−a be the entire functions which are the solutions to:

φ+
a (x) +

∫ a

0
J0(2
√
xy)φ+

a (y) dy = J0(2
√
ax) (105)

φ−a (x)−
∫ a

0
J0(2
√
xy)φ−a (y) dy = J0(2

√
ax) (106)

Then

Êa(s) =
√
a
(
a−s +

1

2

∫ ∞

a
(φ+
a (x)− φ−a (x))x−s dx

)
(107)

is an entire function with trivial zeros at −N and, defining Ea(s) = Γ(s)Êa(s), we have:

∀s, z ∈ C
∫ ∞

a
X as (x)X az (x) dx =

Ea(s)Ea(z)− Ea(1− s)Ea(1− z)
s+ z − 1

(108)

16evaluators for the “euclidean” product
∫
fg dx, not the “hilbertian”

∫
fg dx.
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We knew in advance that we had to end up with a formula such as (108) (with a E function to
be discovered17), and this is why we started investigating (x d

dx + s)Xa
s (x) in the first place! The

reason is this: the Hilbert space of the entire functions F(s), f ∈ Ka (the Hilbert structure is the

one from Ka, or (F1,F2) = 1
2π

∫
<(s)= 1

2
F1(s)F2(s) |ds||Γ(s)|2 ) verifies the de Branges axioms [2], up to

the change of variable s = 1
2 − iz. Let us recall the axioms of [2] for a (non-zero) Hilbert space of

entire functions F (z):

(H1) for each z, evalution at z is a continuous linear form,

(H2) for each F , z 7→ F (z) belongs to the Hilbert space and has the same norm as F ,

(H3) if F (w) = 0 then G(z) = z−w
z−wF (z) belongs to the space and has the same norm as F

Let K(z, w) be defined as the evaluator at z: ∀F F (z) = (F,K(z, ·)). It is anti-analytic in z and
analytic in w (the scalar product is complex linear in its first entry, and conjugate linear in its
second entry). It is a reproducing kernel: K(z, w) = (K(z, ·),K(w, ·)). It is proven in [2] that (H1),
(H2), (H3) entail the existence of an entire function E(z) with |E(z)| > |E(z)| for =(z) > 0, such

that the space is exactly the set of entire functions F (z) such that both F (z)
E(z) and F (z)

E(z) belong to

H2(=(z) > 0), and the Hilbert space norm of F is 1
2π

∫
R |F (t)|2 dt

|E(t)|2 .18 We have incorporated a 2π

for easier comparison with our conventions. Then the reproducing kernel is expressed as:

K(z, w) =
E(z)E(w)− E(z)E(w)

i(z − w)
(109)

The function E is not unique; if the space has the isometric symmetry F (z) 7→ F (−z), a function
E exists which is real on the imaginary axis and writing E = A − iB where A and B are real on
the real axis, the pair (A,B) is unique up to A 7→ kA, B 7→ k−1B, A is even and B is odd. If
A(0) 6= 0 (this happens exactly when the space contains at least one element not vanishing at 0)
then it may be uniquely normalized so that A(0) = 1. Then E is uniquely determined.

Model examples are the Paley-Wiener spaces of entire functions F (z) of exponential type at
most τ with ‖F‖2 = 1

2π

∫
R |F (t)|2 dt <∞. Then E(z) = e−iτz is a possible E function. The Paley-

Wiener spaces are related to the study of the differential operator − d2

dx2
on the positive half-line,

and an important class of spaces verifying the axioms of [2] is associated with the theory of the

eigenfunction expansions for Schrödinger operators − d2

dx2
+V (x) ([27]). In these examples the spaces

are indexed by a parameter τ (the Schrödinger operator is first studied on a finite interval (0, τ))
and they are ordered by isometric inclusions (the E-function of a bigger space may be used in the
computation of the norm of an element of a smaller space). Typically indeed, de Branges spaces are
studied included in one fixed space L2(R, 1

2πdν), are ordered by isometric inclusion and indexed by a
parameter19. Obviously this theory is intimately related with the Weyl-Stone-Titchmarsh-Kodaira
theory of the spectral measure. The articles of Dym [14] and Remling [27], the book of Dym and
McKean [15], will be useful to the interested reader. In the case of the study of H we will have
dν(γ) = |Γ(1

2 + iγ)|−2dγ. It is an important flexibility of the axioms not to be limited to functions
of finite exponential type, and also the spectral measures are not necessarily such that (1 + γ2)−1

17the method was initially developed by the author for the cosine and sine transforms [5, 6] and leads for them
to the only known “explicit” formulas for E ; for the zero order Hankel transform the problem of computing the
reproducing kernel had been already solved by de Branges [1].

18the conditions on F (z) are not formulated in [2] as Hardy space conditions, but they are exactly equivalent.
19the axioms allow for “jumps” in the isometric chain of inclusions, as occur in the theory of the Krein strings [15],

discrete Schrödinger equations being special cases.

J. Burnol Scattering, determinants, hyperfunctions in relation to Γ(1−s)
Γ(s)

Rejecta Mathematica Vol. 2, No. 1, June 2011

This work is published under the Creative Commons Attribution-NonCommercial License. http://creativecommons.org/licenses/by-nc/2.5/legalcode

82

http://math.rejecta.org
http://creativecommons.org/licenses/by-nc/2.5/legalcode


is integrable. It has turned out in our study of the spaces associated with the H-transform that
the naturally occurring E function is not the one normalized to take value 1 at z = 0. Rather the
normalization will prove to be limσ→+∞

−iB(iσ)
A(iσ) = 1. This has an important impact on the aspect

of the differential equations which will govern the deformation of the Ka’s with respect to a: they
will take the form of a first order linear differential system in canonical form (as generally studied
in [21, §3].)

The space of the functions F(s) = Γ(s)f̂(s), f ∈ Ka verify (this is easy) the de Branges axioms,
with s = 1

2 − iz and they were defined20 in [1]. The spaces Ka have the real structure, which is

manifest in the s variable through the isometry F(s) 7→ F(s). Rather than with the reproducing
kernel K(z1, z2) we work mainly with X (s1, s2) = K(−z1, z2) which is analytic in both variables.
Of course then it is X (s, s) which gives the squared norm of the evaluator at s. Writing E(s) = E(z)
we obtain from (109):

X (s1, s2) =
E(s1)E(s2)− E(1− s1)E(1− s2)

s1 + s2 − 1
(110)

which is indeed what has appeared on the right hand side of (108). With E(s) = A(s)− iB(s), A
(resp. B) even (resp. odd) under s 7→ 1− s, this is also:

X (s1, s2) = 2
−iB(s1)A(s2) +A(s1)(−iB(s2))

s1 + s2 − 1
(111)

and for <(s) 6= 1
2 , 0 < X (s, s) = 2=(B(s)A(s))

<(s)− 1
2

so both A and B have all their zeros on the critical

line.21

The method in this chapter has been developed in [5, 8, 6] for the case of the cosine and
sine transforms, and it leads to the currently only known “explicit” formulae22 for the structural
elements E , A, B and reproducing kernels for the spaces for the cosine and sine transforms. So far,
almost nothing very specific to H has been used apart from it being self-adjoint self-reciprocal with
an entire multiplicative kernel k(xy). The next section is still of a very general validity.

As was mentioned in the Introduction the realization of the structural elements of the spaces as
right Mellin transforms of distributions is a characteristic aspect of the method; the Dirac delta’s
in the expressions for Aa(x) and −iBa(x) could have been overlooked if we had only been prepared
to use functions, and the whole development was based on the computation of (x d

dx + s)Xs(x) as a
distribution. This aspect will be further reinforced in the concluding chapter of the paper (section
9) where it will be seen that the distributions Aa(x) and −iBa(x) are very naturally differences of
boundary values of analytic functions, so they are hyperfunctions [23] in a natural manner.

Let us consider the behavior of Âa(s), B̂a(s), Êa(s) and Ĥ(Ea)(s) for <(s) ≥ 1
2 . Let us first

look at Êa(s) =
√
a
(
a−s + 1

2

∫∞
a (φ+

a (x) − φ−a (x))x−s dx
)

. We remark that φ+
a (x) − φ−a (x) is the

H-transform of −(φ+
a (x) + φ−a (x))10<x<a(x).

Lemma 8. Let k(x) a continuous function on [0,+∞) and A ∈ [0, 1] be such that k1(x) =∫ x
0 k(t) dt = O(xA) as x → ∞. Let a > 0 and let f(x) be an absolutely continuous function

on [0, a]. Then
∫ a

0 k(xy)f(y) dy = O(xA−1) as x→ +∞.

There exists C < ∞ such that ∀x > 0 |k1(x)| ≤ C xA. Then
∫ a

0 k(xy)f(y) dy = 1
xk1(xa)f(a)−

1
x

∫ a
0 k1(xy)f ′(y) dy, and |

∫ a
0 k1(xy)f ′(y) dy| ≤ CxA

∫ a
0 y

A|f ′(y)| dy. This was easy. . .

20in the variable z, and associated with the Hankel transform of order zero, rather than with the H transform.
21this is also seen from 2A(s) = E(s) + E(1− s) as |E(s)| > |E(1− s)| for <(s) > 1

2
. As X (s, s) = |E(s)|2−|E(1−s)|2

2<(s)−1

this is in fact the same argument.
22as “explicit” as the Fredholm determinants of the finite Dirichlet kernels are “explicit”.
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With k(x) = J0(2
√
x), one has k1(x) =

√
xJ1(2

√
x) = O(x

1
4 ). We have φ+

a (x) − φ−a (x) =

−
∫ a

0 J0(2
√
xy)(φ+

a (x)+φ−a (x)) dy and from Lemma 8 this is O(x−
3
4 ). So the integral in the expres-

sion for Êa(s) is absolutely convergent for <(s) > 1
4 . In particular Êa is bounded on the critical

line. But then Ĥ(Ea)(s) = χ(s)Êa(1− s) is also bounded. Hence:

Proposition 9. The functions Âa and B̂a are bounded on the critical line.

Let us turn to the situation regarding <(s) = σ → +∞.

Let f(x) be a function of class C2 on [0, a] and e(x) =
∫ a

0 J0(2
√
xy)f(y) dy. It is O(x−

3
4 ).

There holds d
dxxe(x) =

∫ a
0 ( ddyyJ0(2

√
xy))f(y) dy = af(a)J0(2

√
ax) −

∫ a
0 J0(2

√
xy) yf ′(y) dy. Let

k(x) =
∫ a

0 J0(2
√
xy) yf ′(y) dy. By the Lemma 8 it is O(x−

3
4 ). For <(s) > 3

4 , with absolutely
convergent integrals:

af(a)

∫ ∞

a
J0(2
√
ax)x−s dx−

∫ ∞

a
k(x)x−s dx = −ae(a)a−s + s

∫ ∞

a
e(x)x−s dx (112)

We show that the left hand side of (112) is O(a−s 1
s ) for <(s) > 5

4 . We apply to k what we did for

e, d
dxxk(x) = a2f ′(a)J0(2

√
ax) −

∫ a
0 J0(2

√
xy) y(yf ′)′(y) dy. This is O(1) (using |J0| ≤ 1). So for

<(s) > 1, we can compute
∫∞

0 ( d
dxxk(x))x−s dx by integration by parts, this gives −ak(a)a−s +

s
∫∞
a k(x)x−s dx. So for <(s) ≥ 1 + ε we have

∫∞
a k(x)x−s dx = O(a−s 1

s ). Then regarding∫∞
a J0(2

√
ax)x−s dx we note that d

dxxJ0(2
√
ax) = J0(2

√
ax)−√axJ1(2

√
ax), so for <(s) ≥ 5

4 +ε we
can apply the same method of integration by parts, and prove that

∫∞
a J0(2

√
ax)x−s dx = O(a−s 1

s ).
So the left hand side of (112) is indeed O(a−s 1

s ) for <(s) ≥ 3
2 and we have:

Lemma 10. Let f(x) be a function of class C2 on [0, a] and let e(x) =
∫ a

0 J0(2
√
xy)f(y) dy. One

has ∫ ∞

a
e(x)x−s dx =

a−s

s

(
ae(a) +O(

1

s
)
)

(<(s) ≥ 3

2
) (113)

Let us return to
∫∞
a J0(2

√
ax)x−s dx = 1

s

(
J0(2a)a1−s+

∫∞
a (J0(2

√
ax)−√axJ1(2

√
ax))x−s dx

)
.

We want to iterate so we also need x d
dx

√
axJ1(2

√
ax) = 1

42
√
ax d

d2
√
ax

2
√
axJ1(2

√
ax) = axJ0(2

√
ax).

So we can integrate by parts and obtain that the last Mellin integral is O(a−s 1
s ) for <(s) ≥ 7

4 + ε.
So, certainly: ∫ ∞

a
J0(2
√
ax)x−s dx =

a−s

s

(
aJ0(2a) +O(

1

s
)
)

(<(s) ≥ 5

2
) (114)

Using φ+
a = Ja0 −HPaφ+

a and φ−a = Ja0 +HPaφ−a and combining (113) and (114) we obtain:

Proposition 11. One has for <(s) ≥ σ0 (here σ0 = 5
2 for example):

Êa(s) = a
1
2
−s(1 +

aφ+(a)− aφ−(a)

2s
+O(

1

s2
)) Âa(s) =

√
a

2
a−s(1 +

aφ+
a (a)

s
+O(

1

s2
))

(115a)

Ĥ(Ea)(s) = a
1
2
−s(

aφ+(a) + aφ−(a)

2s
+O(

1

s2
)) −iB̂a(s) =

√
a

2
a−s(1− aφ−a (a)

s
+O(

1

s2
))

(115b)

Theorem 12. One has

lim
σ→+∞

−iBa(σ)

Aa(σ)
= 1 and

Ea(1− σ)

Ea(σ)
∼σ→+∞

aφ+
a (a) + aφ−a (a)

2σ
(116)
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So the functions Aa and Ba are not normalized as is usually done in [2] which is to impose (when
possible) to the E function to have value 1 at the origin (which for us is s = 1

2 ; the exact value of
Aa(1

2) will be obtained later.) This difference in normalization is related to the realization of the
differential equations governing the deformation of the spaces Ka as a first order differential system
in “canonical” form, as in the classical spectral theory of linear differential equations ([21, 10].)
This allows to realize the self-reciprocal scale reversing operator as a scattering [6].

6 Fredholm determinants, the first order differential system, and
scattering

Let us return to the defining equations for the entire functions φ+
a and φ−a :

φ+
a +HPaφ+

a = Ja0 (117a)

φ−a −HPaφ−a = Ja0 (117b)

Either we read these equations as identities on (0,∞), or we decide that HPaφ±a in fact stands for∫ a
0 J0(2

√
xy)φ±a (y) dy, and the equation holds for x ∈ C; the latter option slightly conflicts with our

earlier definition of H as an operator on functions or distributions. But whatever choice is made
this has no impact on what comes next. We shall apply to the equations the operators a ∂

∂a and

x ∂
∂x . As Ja0 (x) = J0(2

√
ax) we have a ∂

∂aJ
a
0 = x ∂

∂xJ
a
0 . We write δx = x ∂

∂x + 1
2 = ∂

∂xx− 1
2 . First we

have:

a
∂

∂a
φ+
a +HPaa

∂

∂a
φ+
a = −aφ+

a (a)Ja0 + a
∂

∂a
Ja0 (118a)

a
∂

∂a
φ−a −HPaa

∂

∂a
φ−a = +aφ−a (a)Ja0 + a

∂

∂a
Ja0 (118b)

Then, as x ∂
∂xH = −H ∂

∂xx, δxH = −Hδx, δxPaf = (Paδxf)− af(a)δa(x), δxJ
a
0 = a ∂

∂aJ
a
0 + 1

2J
a
0 :

δxφ
+
a −HPaδxφ+

a = (
1

2
− aφ+

a (a))Ja0 + a
∂

∂a
Ja0 (119a)

δxφ
−
a +HPaδxφ−a = (

1

2
+ aφ−a (a))Ja0 + a

∂

∂a
Ja0 (119b)

Combining we obtain:

a
∂

∂a
φ+
a − δxφ−a +HPa(a

∂

∂a
φ+
a − δxφ−a ) = −(aφ+

a (a) + aφ−a (a) +
1

2
)Ja0 (120a)

a
∂

∂a
φ−a − δxφ+

a −HPa(a
∂

∂a
φ−a − δxφ+

a ) = +(aφ+
a (a) + aφ−a (a)− 1

2
)Ja0 (120b)

Comparing with (117a) and (117b), and as there is uniqueness:

a
∂

∂a
φ+
a − δxφ−a = −(aφ+

a (a) + aφ−a (a) +
1

2
)φ+
a (121a)

a
∂

∂a
φ−a − δxφ+

a = +(aφ+
a (a) + aφ−a (a)− 1

2
)φ−a (121b)
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The quantity aφ+
a (a) + aφ−a (a) will play a fundamental rôle and we shall denote it by µ(a).23 So:

(a
∂

∂a
+

1

2
+ µ(a))φ+

a = δxφ
−
a (122a)

(a
∂

∂a
+

1

2
− µ(a))φ−a = δxφ

+
a (122b)

It follows easily from this that a ∂
∂a(φ+

a φ
−
a ) = −φ+

a φ
−
a + 1

2
∂
∂xx((φ+

a )2 + (φ−a )2). So

a
d

da

∫ a

0
φ+
a (x)φ−a (x) dx = aφ+

a (a)φ−a (a)−
∫ a

0
φ+
a (x)φ−a (x) dx+

1

2
a(φ+

a (a)2 + φ−a (a)2) (123)

a
d

da
a

∫ a

0
φ+
a (x)φ−a (x) dx =

1

2
µ(a)2 (124)

We then compute:

∫ a

0
φ+
a (x)φ−a (x) dx =

∫ a

0
((1−Da)

−1Ja0 )(x)Ja0 (x) dx , (125)

where we recall φ+
a = (1 + Ha)

−1Ja0 , φ−a = (1 − Ha)
−1Ja0 , Da = H2

a . The operator Da acts
on L2(0, a; dx) with kernel Da(x, z) =

∫ a
0 J0(2

√
xy)J0(2

√
yz) dy. After the change of variables

x = at, y = au, z = av this becomes the operator da on L1(0, 1; dt) with kernel da(t, v) =∫ 1
0 aJ0(2a

√
tu) aJ0(2a

√
uv) du. We compute the derivative with respect to a:

∂

∂a

∫ 1

0
aJ0(2a

√
tu) aJ0(2a

√
uv) du (126a)

=

∫ 1

0
((2u

∂

∂u
+ 1)J0(2a

√
tu)) aJ0(2a

√
uv) du+

∫ 1

0
aJ0(2a

√
tu))((2

∂

∂u
u− 1)J0(2a

√
uv)) du

(126b)

= 2aJ0(2a
√
t)J0(2a

√
v) (126c)

So d
dada is a rank one operator, with range CJ0(2a

√
t)10<t<1(t). We now use the well-known

formula
d

da
log det(1− da) = −Tr((1− da)−1 d

da
da) (127)

The rank one operator (1 − da)
−1 d

dada has the function (1 − da)
−12aJ0(2a

√
t) as eigenvector

and the eigenvalue is
∫ 1

0 J0(2a
√
t)((1 − da)

−12aJ0(2a
√
v))(t) dt. Going back to (0, a) we obtain

2
∫ a

0 J0(2
√
ax)((1−Da)

−1J0(2
√
az))(x) dx and in view of (125) we have proven:

d

da
log det(1−Da) = −2

∫ a

0
φ+
a (x)φ−a (x) dx (128)

Then, using (124), we have the important formula:

µ(a)2 = −a d
da

a
d

da
log det(1−Da) (129)

23maybe it would be unfair to hide the fact that µ(a) = 2a, in this study of H! In a later section a further mu
function, associated with a variant of H, will also be found explicitely and it will be quite more complicated.
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We shall now also relate φ+
a (a) and φ−a (a) to Fredholm determinants. In fact the following holds:

aφ+
a (a) = +a

d

da
log det(1 +Ha) (130a)

aφ−a (a) = −a d
da

log det(1−Ha) (130b)

This is the application of a well-known general theorem, for any continuous kernel k(x, y): if
w(x) +

∫ a
0 k(x, y)w(y) dy = k(x, a) for 0 ≤ x ≤ a then w(a) = + d

da log det(0,a)(δ(x − y) + k(x, y)).
A proof may be given which is of a somewhat similar kind as the one given above for (128), or
one may more directly use the Fredholm’s formulas for the determinant and the resolvent.24 The
theorem is proven in the book of P. Lax [20], Theorem 12 of Chapter 24 (Lax treats the case of a
kernel on (a,+∞), here we have the simpler case of a finite interval (0, a).) This means that µ(a)
has another expression in terms of Fredholm determinants:

µ(a) = a
d

da
log

det(1 +Ha)

det(1−Ha)
(131)

Combining (129) and (131) we obtain:

−2a
d

da
a
d

da
log det(1 +Ha) =

(
a
d

da
log

det(1 +Ha)

det(1−Ha)

)2

− a d
da
a
d

da
log

det(1 +Ha)

det(1−Ha)
(132a)

−2a
d

da
a
d

da
log det(1−Ha) =

(
a
d

da
log

det(1 +Ha)

det(1−Ha)

)2

+ a
d

da
a
d

da
log

det(1 +Ha)

det(1−Ha)
(132b)

2a
d

da
aφ+

a (a) = −µ(a)2 + aµ′(a) (132c)

2a
d

da
aφ−a (a) = +µ(a)2 + aµ′(a) (132d)

d

da
a(φ−a (a)− φ+

a (a)) = a(φ+
a (a) + φ−a (a))2 (132e)

These Fredholm determinants identities are reminiscent of certain well-known Gaudin identities
[22, App. A16], which apply to the even and odd parts of an additive (Toeplitz) convolution kernel
on an interval (−a, a); here the situation is with kernels k(xy) which have a multiplicative look,
and reduction to the additive case would give g(t+ u) type kernels on semi-infinite intervals.

We have defined Aa =
√
a

2 (φ+
a + Hφ+

a ) and −iBa =
√
a

2 (−φ−a + Hφ−a ). Let us recall that
here φ±a is restricted to [0,+∞) and is then tempered as a distribution. Using the differential
equations (122a) and (122b) and the commutation property δxH = −Hδx, δx = x ∂

∂x + 1
2 , we

have δxAa =
√
a

2 (δxφ
+
a − Hδxφ+

a ) =
√
a

2 (a ∂
∂a + 1

2 − µ(a))(φ−a − Hφ−a ) = −(a ∂
∂a − µ(a))(−iBa) and

δx(−iBa) =
√
a

2 (−(a ∂
∂a + 1

2 + µ(a))φ+
a − (a ∂

∂a + 1
2 + µ(a))Hφ+

a ) = −(a ∂
∂a + µ(a))Aa. The following

first order system of differential equations therefore holds:

a
∂

∂a
Aa = −µ(a)Aa − δx(−iBa) (133a)

a
∂

∂a
(−iBa) = +µ(a)(−iBa)− δxAa (133b)

24let us recall that for a continuous kernel on a finite interval, the formula of Fredholm for a determinant as a
convergent series always applies, even if the operator given by the kernel is not trace class, which may happen.
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Then we also have the second order differential equations (a ∂
∂a−µ(a))(a ∂

∂a +µ(a))Aa = +δ2
xAa and

(a ∂
∂a + µ(a))(a ∂

∂a − µ(a))(−iBa) = +δ2
x(−iBa), or, taking the right Mellin transforms, and writing

s = 1
2 + iγ, δx = iγ:

−a ∂
∂a
a
∂

∂a
Âa + (µ(a)2 − aµ′(a))Âa = γ2Âa (134a)

−a ∂
∂a
a
∂

∂a
(−iB̂a) + (µ(a)2 + aµ′(a))(−iB̂a) = γ2(−iB̂a) (134b)

With the new variable u = log(a) we obtain Dirac and Schrödinger equations which are associated
with this study of H, modeled on the study of the cosine and sine transforms summarized in [5, 6].
All quantities in the statement of the theorem will be completely explicited later in terms of Bessel
functions, but we keep the notation sufficiently general to allow, if an interesting other case arises,
to write down the identical results:

Theorem 13. For each a > 0 let φ+
a and φ−a be the entire functions which are the solutions to:

φ+
a (x) +

∫ a

0
J0(2
√
xy)φ+

a (y) dy = J0(2
√
ax) (135a)

φ−a (x)−
∫ a

0
J0(2
√
xy)φ−a (y) dy = J0(2

√
ax) (135b)

Let Ha be the integral operator on L2(0, a; dx) with kernel J0(2
√
xy). There holds:

φ+
a (a) = +

d

da
log det(1 +Ha) (135c)

φ−a (a) = − d

da
log det(1−Ha) . (135d)

The tempered distributions Aa =
√
a

2 (1 + H)(φ+
a 10<x<∞) and Ba = i

√
a

2 (−1 + H)(φ−a 10<x<∞)
vanish on (−∞, a) and are respectively self-reciprocal and skew-reciprocal under H. Their completed

right Mellin transforms Aa(s) = Γ(s)Âa(s) and Ba(s) = Γ(s)B̂a(s) are entire functions with all
their zeros on the critical line, they are respectively even and odd for s ↔ 1 − s, and they verify
the following Dirac and Schrödinger types of differential equations in the variable u = log(a),
−∞ < u < +∞,

d

du
Aa = −µ(a)Aa − γBa (135e)

d

du
Ba = +µ(a)Ba + γAa (135f)

γ2Aa =

(
− d2

du2
+ V+(u)

)
Aa (135g)

γ2Ba =

(
− d2

du2
+ V−(u)

)
Ba (135h)

V+(log a) = µ(a)2 − dµ(a)

du
= −2

d2 log det(1 +Ha)

du2
(135i)

V−(log a) = µ(a)2 +
dµ(a)

du
= −2

d2 log det(1−Ha)

du2
(135j)

µ(a) =
d

du
log

det(1 +Ha)

det(1−Ha)
= aφ+

a (a) + aφ−a (a) (135k)

where s = 1
2 + iγ.
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Let us consider the Hilbert space of pairs

[
α(u)
β(u)

]
on R with squared norms

∫∞
−∞ |α(u)|2 +

|β(u)|2 du2 , and the two equivalent differential systems in canonical forms:

([
0 1
−1 0

]
d

du
−
[

0 µ(eu)
µ(eu) 0

])[
α(u)
β(u)

]
= γ

[
α(u)
β(u)

]
(136)

([
0 1
−1 0

]
d

du
+

[
−µ(eu) 0

0 µ(eu)

])[
α(u) + β(u)
−α(u) + β(u)

]
= γ

[
α(u) + β(u)
−α(u) + β(u)

]
(137)

The components obey the corresponding Schrödinger equations:

−α′′(u) + V+(u)α(u) = γ2α V+(u) = µ(eu)2 − dµ(eu)

du
(138a)

−β′′(u) + V−(u)β(u) = γ2β V−(u) = µ(eu)2 +
dµ(eu)

du
(138b)

Regarding the behavior at −∞, we are in the limit-point case for each of the Schrödinger equations
(138a) and (138b) because clearly (say, from the defining integral equations for φ+

a and φ−a ) one has
φ+
a (a)→a→0 J0(0) = 1, φ−a (a)→a→0 1, µ(a) ∼a→0 2a, so the potentials are exponentially vanishing

as u → −∞. Perhaps we should reveal that one has exactly µ(a) = 2a = 2eu so we are dealing
here with quite concrete Schrödinger equations and Dirac systems whose exact solutions will later
be written explicitely in terms of modified Bessel functions, but we delay using any information
which would be too specific of the H-transform.

For each γ ∈ C

u 7→
[Aexp(u)(

1
2 + iγ)

Bexp(u)(
1
2 + iγ)

]
(139)

is a (non-zero) solution of the system (136), and we now show that it is square-integrable (with re-
spect to du = d log(a)) at +∞. Let us recall the equation (111) (s+z−1)Xa(s, z) = −2iBa(s)Aa(z)−
2iAa(s)Ba(z), from which we deduce

a
∂

∂a
Xa(s, z) = −2Aa(s)Aa(z)− 2(iBa(s))(iBa(z)) (140)

We have25 ‖X as ‖2 = Xa(s, s), Aa(s) = Aa(s), iBa(s) = iBa(s), so

a
∂

∂a
‖X as ‖2 = −2|Aa(s)|2 − 2|Ba(s)|2 (141)

and as of course lima→+∞ ‖X as ‖2 = 0 (we have ‖X as ‖2 ≤
∫∞
a |X 1

s |2(x) dx for a ≥ 1) we obtain:

∀s ∈ C ‖X as ‖2 = 2

∫ ∞

a
(|Aa(s)|2 + |Ba(s)|2)

da

a
(142)

This establishes the square-integrability at +∞ of
[Aexp(u)(s)

Bexp(u)(s)

]
, for any s ∈ C.

The solutions of (136) with eigenvalue γ = 0 are
[
Aa( 1

2
)

0

]
and

[
0

Aa( 1
2

)−1

]
. The former is square-

integrable, so from 2 ≤ t + t−1 the latter then necessarily is not. This confirms that the Dirac
system (136) is in the limit point case at +∞ (according to a general theorem of Levitan [21, §13,

25let us recall the notation X as = Γ(s)Xa
s ∈ L2(a,+∞; dx).
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Thm 7.1] any first order differential operator
[

0 1
−1 0

]
d
du +

[
a(u) b(u)
c(u) d(u)

]
with continuous coefficients is

in the limit point case at infinity). So the pair (139) is in fact, for any γ ∈ C, the unique solution of
(136) which is square-integrable at +∞. Also the Schrödinger equation (138b) is in the limit point
case as not all of its solutions are square integrable at +∞. Whether the limit-point case at +∞
holds for equation (138a) is less evident. Let us recall from [10, §9, Thm 2.4] and [26, §X, Thm X.8]
that a sufficient condition for this is the existence of a lowerbound lim infu→+∞ V+(u)/u2 > −∞.
We will prove in the next chapter that µ(a) = 2a = 2eu so this is certainly the case here. In the
present chapter only the fact that the Dirac system is known to be in the limit-point case will be
used.

We now take u0 = log a0 and apply on (u0,∞) the Weyl-Stone-Titchmarsh-Kodaira theory ([10,
§9], [21, §3]). Let ψ(u, s) be the unique solution of the system (136) for the eigenvalue γ, s = 1

2 +iγ,
and with the initial condition ψ(u0, s) = [ 1

0 ] and let φ(u, s) be the unique solution with the initial
condition φ(u0, s) = [ 0

1 ]. Let m(γ)ψ(u, s) + φ(u, s) for =γ > 0 be the unique solution which is

square-integrable on (u0,+∞). So m(γ) =
Aa0 (s)

Ba0 (s) , s = 1
2 + iγ, <(s) < 1

2 . It is a fundamental

general property of the m function from Hermann Weyl’s theory that =(m(γ)) > 0 (for =(γ) > 0.)
Here, we have a case where the m-function is found to be meromorphic on all of C; so we see that its
poles and zeros on R are simple. Furthermore, the spectral measure ν is obtained via the formula
ν(a, b) = limε→0+

1
π

∫ b
a =m(γ + iε) dγ (under the condition ν{a, b} = 0). We obtain:

dν(γ) =
∑

Ba0 (ρ)=0

Aa0(ρ)

−iB′a0(ρ)
δ(γ −=ρ) (143)

The spectrum is thus purely discrete and the general theory tells us further that the finite linear

combinations
∑

ρ cρ
Aa0 (ρ)

−iB′a0 (ρ)ψ(u, ρ) have squared norms
∑

ρ
Aa0 (ρ)

−iB′a0 (ρ) |cρ|2 and also that they are

dense in L2((u0,∞) → C2; du). For Ba0(ρ) = 0, ψ(u, ρ) = Aa0(ρ)−1
[Aexp(u)(ρ)

Bexp(u)(ρ)

]
1u≥u0(u), so the

vectors Za0ρ =
[

2Aexp(u)(ρ)

2Bexp(u)(ρ)

]
1u≥u0(u) are an orthogonal basis of L2((u0,∞) → C2; 1

2du) and they

satisfy ‖Za0ρ ‖2 = −2Aa0(ρ) iB′a0(ρ). Similarly a spectral interpretation is given to the zeros of Aa0
if one looks at the initial condition [ 0

1 ]. The factors of 2 and 1
2 , have been incorporated so that the

statement may be translated (taking into account results established later) into the fact that the
evaluators Ka0(ρ, z), for Ba0(ρ) = 0, are an orthogonal basis of the Hilbert space of the functions
Γ(z)f̂(z), f ∈ Ka0 . This last statement is a general theorem (under a certain condition) for spaces
with the de Branges axioms [2, §22].

To discuss in a self-contained manner the generalized Parseval identity which is associated with
the differential system on the full line, it is convenient to make a preliminary majoration of ‖Xa

s ‖2,

<(s) = 1
2 . From (108) we have, for <(s) = 1

2 : ‖X as ‖2 = 2<(Ea(s)E ′a(s)). And Ea(s) = Γ(s)Êa(s).

And Êa(s) =
√
a
(
a−s + 1

2

∫∞
a (φ+

a (x) − φ−a (x))x−s dx
)

. We know from the discussion of Lemma

9 that the integral in the expression for Êa(s) is absolutely convergent for <(s) > 1
4 . Hence by

the Riemann-Lebesgue lemma Êa(
1
2 + iγ) ∼ a−iγ as |γ| → ∞, γ ∈ R. Similarly, Êa

′
(1

2 + iγ) ∼
− log(a)a−iγ . So, with ‖X as ‖2 = |Γ(s)|2‖Xa

s ‖2 and using Stirling’s formula we obtain:

Lemma 14. For each given a > 0 one has ‖Xa
s ‖2 ∼ 2 log |s| as |s| → ∞, <(s) = 1

2 .

From (104) expressed using Aa and Ba we see that B̂a(s)

s− 1
2

is square integrable, so s−1B̂a(s) is

square integrable on the critical line (with respect to |ds|). Then using again (104) we see that
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s−1Âa(s) is also square integrable on the critical line.26 Let us pick a function F (s) on the critical

line which is such that sF (s) is square integrable. Then F (s)Âa(s) and F (s)B̂a(s) are absolutely

integrable on the critical line and (
∫
<(s)= 1

2
|F (s)Âa(s)| |ds|2π )2 ≤ C

∫
<(s)= 1

2

|Âa(s)|2
|s|2

|ds|
2π and similarly

with Ba. If we define αF (u) = 2
∫
<(s)= 1

2
F (s)Âa(s)

|ds|
2π and βF (u) = 2

∫
<(s)= 1

2
F (s)B̂a(s)

|ds|
2π we then

compute:

∫ ∞

u0

|αF (u)|2 + |βF (u)|2 du ≤ C
∫

<(s)= 1
2

∫∞
u0

(|Âa(s)|2 + |B̂a(s)|2) du

|s|2
|ds|
2π

=
C

2

∫

<(s)= 1
2

‖Xa
s ‖2
|s|2

|ds|
2π

<∞ (144)

So αF (u) and βF (u) are square integrable at +∞. More precisely the above upper bound holds as

well for
∫
<(s)= 1

2
|F (s)Âa(s)| |ds|2π and

∫
<(s)= 1

2
|F (s)B̂a(s)| |ds|2π . So the double integrals

∫∫

u0<u<∞,<(s)= 1
2

Aexp(u)(z)Aexp(u)(s)F(s)
|ds|

2π|Γ(s)|2 du (145a)

∫∫

u0<u<∞,<(s)= 1
2

Bexp(u)(z)Bexp(u)(s)F(s)
|ds|

2π|Γ(s)|2 du (145b)

where z ∈ C is arbitrary, and F(s) = Γ(s)F (s), are absolutely convergent and Fubini may be
employed. Using (140):

Xexp(u0)(z, s) = 2

∫ ∞

u0

(Aexp(u)(z)Aexp(u)(s) + Bexp(u)(z)Bexp(u)(s)) du (146)

And we obtain the following identity of absolutely convergent integrals, for any F(s) = Γ(s)F (s)

with s F (s) ∈ L2(<(s) = 1
2 ; |ds|2π ):

∫

<(s)= 1
2

Xexp(u0)(z, s)F(s)
|ds|

2π|Γ(s)|2 =

∫ ∞

u0

(Aexp(u)(z)αF (u) + Bexp(u)(z)βF (u)) du (147)

We shall prove that this identity holds under the weaker hypothesis F (s) ∈ L2(<(s) = 1
2 ; |ds|2π ).

First, still with s F (s) square integrable we suppose additionally that F = f̂ with f ∈ Kexp(u0)
27.

The hilbertian kernel Kexp(u0)(z, s) is Xexp(u0)(z, s) so Kexp(u0)(z, s) = Xexp(u0)(z, s). The equations
give then:

F(z) =

∫ ∞

u0

(Aexp(u)(z)αF (u) + Bexp(u)(z)βF (u)) du (148a)

αF (u) = 2

∫

<(s)= 1
2

F(s)Aa(s)
|ds|

2π |Γ(s)|2 (148b)

βF (u) = 2

∫

<(s)= 1
2

F(s)Ba(s)
|ds|

2π |Γ(s)|2 (148c)

26we know in fact according to proposition 11 that Âa and B̂a are bounded on the critical line.
27this is certainly possible as we know that the f(x) which are smooth, vanishing on (0, a) and of Schwartz decrease

as x→ +∞ are dense in Ka.
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We have worked under the hypothesis that sF (s) is square integrable. To show that the formulae
extend in the L2 sense, we first examine:

|αF (u)|2 = 4

∫

<(s1)= 1
2

F(s1)Aa(s1)
|ds1|

2π |Γ(s1)|2
∫

<(s2)= 1
2

F(s2)Aa(s2)
|ds2|

2π |Γ(s2)|2 (149)

∫ ∞

u0

|αF (u)|2 + |βF (u)|2 du
2

=

∫∫

<(si)=
1
2

F(s1)F(s2)Xexp(u0)(s1, s2)
|ds1|

2π |Γ(s1)|2
|ds2|

2π |Γ(s2)|2 (150)

There was absolute convergence in the triple integral used as an intermediate. Also Xexp(u0)(s1, s2) =

Xexp(u0)(s2, s1) and
∫
<(s1)= 1

2
F(s1)Xexp(u0)(s2, s1) |ds1|

2π |Γ(s1)|2 = F(s2). Hence:

∫ ∞

u0

(|αF (u)|2 + |βF (u)|2)
du

2
=

∫

<(s)= 1
2

|F (s)|2 |ds|
2π

=

∫ ∞

exp(u0)
|f(x)|2 dx (151)

So with an arbitrary f ∈ Ka, F = f̂ , F(s) = Γ(s)f̂(s), the assignment f 7→ (αF , βF ) exists in

the sense of L2 convergence when one approximates f by a sequence fn in Ka such that sf̂n(s) is

in L2(<(s) = 1
2 ; |ds|2π ), and f 7→ (αF , βF ) is linear and isometric. We check that its range is all of

L2(u0,∞; du2 ) ⊕ L2(u0,∞; du2 ). For this let us identify the functions αw(u) and βw(u) which will
correspond to F(s) = Xa0(w, s) (a0 = exp(u0).) On one hand from (147) it must be the case that:

∀z ∈ C
∫

<(s)= 1
2

Xa0(z, s)Xa0(w, s)
|ds|

2π|Γ(s)|2 =

∫ ∞

u0

(Aexp(u)(z)αw(u)+Bexp(u)(z)βw(u)) du (152)

The left hand side is Xa0(w, z) which on the other hand is given by the formula 2
∫∞
u0

(Aa(z)Aa(w)−
Ba(z)Ba(w)) du. The functions u 7→

[
Aa(z)
Ba(z)

]
, z ∈ C are certainly dense in L2((u0,∞)→ C2; du2 ) as

we know in particular that the pairs for the ρ’s such that Ba0(ρ) = 0 give an orthogonal basis. So
we have the identification on (u0,+∞):

αw(u) = 2Aexp(u)(w) βw(u) = −2Bexp(u)(w) (153)

This proves that the range is all of L2((u0,∞) → C2; du2 ). Let us note that in this identifica-

tion the hilbertian evaluator Ka0(w, ·) is sent to the pair u 7→ 21u>u0(u)(Aa(w) , Ba(w)). To
check if all is coherent we compute the hilbertian scalar product (Ka0(w, ·),Ka0(z, ·)). We obtain
4
∫∞
u0
Aa(w)Aa(z) + Ba(w)Ba(z)du2 = 2

∫∞
u0
Aa(w)Aa(z)− Ba(w)Ba(z) du = Xexp(u0)(w, z), which is

indeed Ka0(w, z).

Let us return to the consideration of a general F (s) ∈ L2(<(s) = 1
2 ; |ds|2π ). Under the hypothesis

that s F (s) is square integrable we have assigned to F the functions

αF (u) = 2

∫

<(s)= 1
2

F(s)Aa(s)
|ds|

2π |Γ(s)|2 =

∫

<(s)= 1
2

F (s)2Âa(s)
|ds|
2π

(154a)

βF (u) = 2

∫

<(s)= 1
2

F(s)Ba(s)
|ds|

2π |Γ(s)|2 =

∫

<(s)= 1
2

F (s)2B̂a(s)
|ds|
2π

(154b)

which are square-integrable at +∞. From (147) there holds, for any a0 = exp(u0):

∫

<(s)= 1
2

Xexp(u0)(z, s)F (s)
|ds|
2π

=

∫ ∞

u0

(2Âexp(u)(z)αF (u) + 2B̂exp(u)(z)βF (u))
du

2
(155)

J. Burnol Scattering, determinants, hyperfunctions in relation to Γ(1−s)
Γ(s)

Rejecta Mathematica Vol. 2, No. 1, June 2011

This work is published under the Creative Commons Attribution-NonCommercial License. http://creativecommons.org/licenses/by-nc/2.5/legalcode

92

http://math.rejecta.org
http://creativecommons.org/licenses/by-nc/2.5/legalcode


The function of z on the left side is the orthogonal projection Fa0 of F to the space K̂a0 . So,
we deduce by unicity αF (u)1u≥u0(u) = αFu0 (u) and βF (u)1u≥u0(u) = βFu0 (u). We then obtain

‖Fa0‖2 =
∫∞
u0

(|αF (u)|2 + |βF (u)|2)du2 so αF and βF are square-integrable on (−∞,+∞), and as

∪aKa is dense in L2(0,∞; dx) the assignment F 7→ (αF , βF ) is isometric, and also it has a dense
range in L2(R→ C2; du2 ). We can then remove the hypothesis that s F (s) is square integrable and
define the functions αF and βF to be the limit in the L2 sense of functions αn and βn associated
with Fn’s such that ‖F − Fn‖ → 0 and the s Fn are square-integrable. Summing up:

Theorem 15. There are unitary identifications L2(0,∞; dx)→̃L2(<(s) = 1
2 ; |ds|2π )→̃L2(R→ C2; du2 )

given in the L2 sense by the formulas, where <(s) = 1
2 :

F (s) = f̂(s) =

∫ ∞

0
f(x)x−s dx f(x) =

∫

<(s)= 1
2

F (s)xs−1 |ds|
2π

(156a)

α(u) = lim
n→∞

∫

<(s)= 1
2

Fn(s) 2Âexp(u)(s)
|ds|
2π

(Fn →L2 F ; s Fn(s) ∈ L2) (156b)

β(u) = lim
n→∞

∫

<(s)= 1
2

Fn(s) 2B̂exp(u)(s)
|ds|
2π

(156c)

F (s) = lim
a0→0

∫ ∞

log(a0)
(α(u) 2Âexp(u)(s) + β(u) 2B̂exp(u)(s))

du

2
(156d)

The orthogonal projection of f to Ka0 corresponds to the replacement of α(u) by α(u)1u>u0(u) and
of β(u) by β(u)1u>u0(u) (u0 = log(a0).). The unitary operators f 7→ H(f), F (s) 7→ χ(s)F (1− s),
correspond to (α, β) 7→ (α,−β). For f = Xa0

z one has α(u) = 2Âexp(u)(z)1u>log(a0)(u) and β(u) =

−2B̂exp(u)(z)1u>log(a0)(u). The self-adjoint operator F (s) 7→ γF (s) (s = 1
2 + iγ) corresponds to the

canonical operator:

H =

[
0 d

du

− d
du 0

]
−
[

0 µ(eu)
µ(eu) 0

]
(156e)

which, in L2(R → C2; du2 ), is essentially self-adjoint when defined on the domain of the functions
of class C1 (or even C∞) with compact support. The unitary operator ei τH acts on L2(0,∞; dx)

as f(x) 7→ e
1
2
τf(eτx).

For the statement of self-adjointness we start with α and β of class C1 with compact support,
define F by (156d) and integrate by parts to confirm that γF (s) corresponds to H ([ αβ ]). We know
by Hermann Weyl’s theorem that in the limit point case the pairs [ αβ ] of class C1 with compact
support are a core of self-adjointness (cf. [21, §13].) On the other hand we know that multiplication

by γ on L2(<(s) = 1
2 ; |ds|2π ) with maximal domain is a self-adjoint operator. So the two self-adjoint

operators are the same.
Having discussed the matter from the point of view of the isometric expansion we now turn to

another topic, the topic of the scattering, or rather total reflection against the potential barrier
at +∞. Another pair of solutions of the first order system (136) (hence also of the second order
differential equations) is known. Let us recall from equations (95a), (95b) that we defined ja =√
a(δa−φ+

a 10<x<a) =
√
aHφ+

a and −ika =
√
a(δa +φ−a 10<x<a) =

√
aHφ−a . Using again (122a) and

(122b) it is checked that ja and ka verify the exact same differential system as Aa and Ba:

a
∂

∂a
ja = −µ(a)ja + iδxka (157a)

a
∂

∂a
ka = +µ(a)ka − iδxja (157b)
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The right Mellin transforms ĵa(s) and −ik̂a(s) are defined as

ĵa(s) = a
1
2
−s −√a

∫ a

0
φ+
a (x)x−s dx (158a)

−ik̂a(s) = a
1
2
−s +

√
a

∫ a

0
φ−a (x)x−s dx (158b)

As φ+
a and φ−a are analytic these are meromorphic functions in C with possible28 pole locations at

s = 1, 2, . . . From the point of view of the Schrödinger equation (138a) and as u = log(a)→ −∞,
a→ 0, we thus see that, for s = 1

2 +iγ, γ ∈ R, ĵa(
1
2 +iγ) and ĵa(

1
2−iγ) are two (linearly independent

for γ 6= 0) solutions, differing from e−iγu and eiγu by an exponentially small (in u = log(a)) quantity
(and similarly with −ik̂a with respect to the Schrödinger equation (135h)). So we have identified
the unique solutions which verify the Jost conditions at −∞.

As Paφ
+
a is square integrable, and also using (85a), we have on the critical line:

Γ(s)ĵa(s) + Γ(1− s)ĵa(1− s) (159a)

= Γ(s)ĵa(s) + Γ(1− s)as− 1
2 − Γ(1− s)√a

∫ a

0
φ+
a (x)xs−1 dx (159b)

= Γ(s)ĵa(s) + Γ(1− s)as− 1
2 − Γ(s)

√
a

∫ ∞

0
(HPaφ+

a )(x)x−s dx (159c)

= Γ(s)ĵa(s) + Γ(1− s)as− 1
2 + Γ(s)

√
a

∫ ∞

0
(φ+
a (x)− J0(2

√
ax))x−s dx (159d)

= Γ(s)a
1
2
−s + Γ(1− s)as− 1

2 − Γ(s)
√
a

∫ a

0
J0(2
√
ax)x−s dx

+ Γ(s)
√
a

∫ ∞

a
(φ+
a (x)− J0(2

√
ax))x−s dx (159e)

As J0(2
√
ax)− φ+

a (x) is square integrable both integrals are simultaneously absolutely convergent
at least for 1

2 < <(s) < 1 (the 1
2 can be improved, but this does not matter). As the boundary

values on the critical line coincide we have an identity of analytic functions. We recognize in∫∞
a J0(2

√
ax)x−s dx, which is absolutely convergent for <(s) > 3

4 , the quantity gs(a) (equation
(73)). And from equation (74) we know gs(a) = χ(s)as−1 −

∫ a
0 J0(2

√
ax)x−s dx. So

Γ(s)ĵa(s) + Γ(1− s)ĵa(1− s) = Γ(s)a
1
2
−s + Γ(s)

√
a

∫ ∞

a
φ+
a (x)x−s dx , (160)

which is indeed 2Aa(s). From the equation (158a) ĵa(s) = a
1
2 (a−s −

∫ a
0 φ

+
a (x)x−s dx) (valid as

is for <(s) < 1) the function u 7→ ĵa(s) differs from u 7→ e−iγu by an error which is relatively
exponentially smaller (we write s = 1

2 + iγ, =(γ) > −1
2). So ĵa is the Jost solution at −∞ of the

Schrödinger equation (135g). The identity relating Ba(s) and k̂a(s) = i a
1
2 (a−s +

∫ a
0 φ
−
a (x)x−s dx)

is proven similarly.

Theorem 16. The unique29 solution, square integrable at u = +∞, of the Schrödinger equation
(135g) (resp. (135h); γ 6= 0) is expressed in terms of the functions ĵa(

1
2 + iγ) (resp. −i k̂a(1

2 + iγ))

28the poles do exist.
29here we make use of the fact that (135g) is in the limit point case at +∞, because it is proven in the next chapter,

or known from (66a), (66b), that µ(a) = 2a = 2 eu, in this study of the H transform.
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satisfying at −∞ the Jost condition ĵa ∼u→−∞ e−iγu (resp. −ik̂a ∼u→−∞ e−iγu) as:

Aa(s) =
1

2

(
Γ(s)ĵa(s) + Γ(1− s)ĵa(1− s)

)
(161a)

Ba(s) =
1

2

(
Γ(s)k̂a(s)− Γ(1− s)k̂a(1− s)

)
(161b)

Let us add a time parameter t and consider the wave equation:

(
∂2

∂t2
− ∂2

∂u2
+ µ2 − dµ

du

)
Φ(t, u) = 0 (162)

Then Φ(t, u) = eiγtĵexp(u)(
1
2 + iγ) is a solution which behaves as eiγ(t−u) as u→ −∞. This wave is

thus right-moving, it is an incoming wave from u = −∞ at t = −∞. For a given frequency γ there is
a unique, up to multiplicative factor, wave which respects the condition of being at each time square
integrable at u = +∞. This wave is eiγtAexp(u)(

1
2 + iγ). So the equation (161a) represents the

decomposition in incoming and reflected components. There is in the reflected component a phase
shift θγ = argχ(s), the solution behaving approximatively at u→ −∞ as C(γ) cos(γu+ 1

2θγ). This
is an absolute scattering, as there is nothing a priori to compare it too. We will thus declare that
equation (162) has realized χ(s) as an (absolute) scattering. Similarly the Schrödinger equation
(135h) realizes −χ(s) as an absolute scattering.

We have 2Aa(1
2) = 2Γ(1

2)ĵa(
1
2) and ĵa(

1
2) = 1− a 1

2

∫ a
0 φ

+
a (x)x−

1
2 dx. So lima→0Aa(1

2) = Γ(1
2) =√

π. On the other hand a d
daAa(1

2) = −µ(a)Aa(1
2) and µ(a) = a d

da log det(1+Ha)
det(1−Ha) . so:

Aa(
1

2
) =
√
π Âa(

1

2
) =
√
π

det(1−Ha)

det(1 +Ha)
(163)

We have a d
da‖X a1

2

‖2 = −2Aa(1
2)2. And X a1

2

= Γ(1
2)Xa

1
2

. So:

Theorem 17. The squared-norm of the evaluator f 7→ Xa
1
2

(f) =
∫∞
a

f(x)√
x
dx on the Hilbert space

Ka of square integrable functions vanishing on (0, a) and with H transforms again vanishing on
(0, a) is:

‖Xa
1
2

‖2 = 2

∫ ∞

a

(
det

1−Hb

1 +Hb

)2 db

b
(164)

where Ha is the restriction of H to L2(0, a; dx).

It will be seen that det(1 +Ha) = ea−
1
2
a2 and det(1−Ha) = e−a−

1
2
a2 . Having spent a long time

in the general set-up we now turn to determine explicitely what the functions φ+
a , φ−a , etc. . . are.

7 The K-Bessel function in the theory of the H transform

Let us recall that we may define the H transform on all of L2(R; dx) through the formula H̃(f)(λ) =
i
λ f̃(−1

λ ). This anticommutes with f(x) 7→ f(−x), and H leaves separately invariant L2(0,+∞; dx)

and L2(−∞, 0; dx). We defined the groups τa : f(x) 7→ f(x − a) and τ#
a = HτaH. We observed

that the two groups are mutually commuting, and that if the leftmost point of the support of f is
at α(f) ≥ 0 then the leftmost point of the support of τ#

b (f), for any b ≥ 0, more precisely for any
b ≥ −α(H(f)), is still exactly at α(f). From this we obtain the exact description of Ka:
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Lemma 18. One has Ka = τaτ
#
a L2(0,+∞; dx).

Let now Q be the orthogonal projection L2(R; dx) 7→ L2(0,+∞; dx). The orthogonal projection

Qa from L2(0,∞; dx) to Ka is thus exactly τaτ
#
a Qτ−aτ

#
−a. It will be easier to work with Ra =

Qτ−aτ
#
−a, especially as we are interested in scalar products so we can skip the τaτ

#
a isometry. First,

we obtain gat (x) = Ra(ft)(x), for ft(x) = e−tx. The part of τ−a(ft) supported in x < 0 will be

sent by τ#
−a to a function supported again in x < 0. We can forget about it and we have thus first

e−tae−tx1x>0(x), whose H transform is e−ta 1
t exp(−x

t ), which we translate to the left, again we cut

the part in x < 0, and we reapply H, this gives gat (x) = e−a(t+ 1
t
)e−tx1x>0(x). In other words we

have used in this computation:

Qτ−aτ
#
−a = HQτ−aHQτ−a (a ≥ 0) (165)

The orthogonal projection fat := Qa(ft) of ft(x) = e−tx1x>0(x) to Ka is thus τaτ
#
a (gat ). We can

then compute exactly the Fourier transform of fat as fat (iτ) = (e−τx, τaτ
#
a (gat ))L2(R) which is also

(τ#
−aτ−ae

−τx, gat )L2(R) = (gτ , g
a
t ) = e−a(t+ 1

t
)e−a(τ+ 1

τ
) 1
t+τ . Hence:

Lemma 19. The orthogonal projection fat to Ka of e−tx1x>0(x) has its Fourier transform f̃at (λ)
which is given as:

f̃at (iτ) = e−a(t+ 1
t
+τ+ 1

τ
) 1

t+ τ
(166)

The Gamma completed right Mellin transform Fat (s) of fat is the left Mellin transform of f̃at (iτ).

∫ ∞

a
fat (x)X as (x) dx = Fat (s) = e−a(t+ 1

t
)

∫ ∞

0
e−a(τ+ 1

τ
) τ

s−1

t+ τ
dτ (167)

Let us write W a
s for the element of L2(0,+∞; dx) such that τaτ

#
a W a

s = X as . We have Fat (s) =

(X as , fat ) = (W a
s , g

a
t ) = e−a(t+ 1

t
)
∫∞

0 W a
s (x)e−tx dx. So the Laplace transform of W a

s (x) is exactly:

∫ ∞

0
W a
s (x)e−tx dx =

∫ ∞

0
e−a(τ+ 1

τ
) τ

s−1

t+ τ
dτ (168)

Writing 1
t+τ =

∫∞
0 e−(t+τ)x dx, we recover W a

s (x) as:

W a
s (x) =

∫ ∞

0
e−a(τ+ 1

τ
)τ s−1e−τx dτ (169)

Then we obtain
∫∞

0 W a
s (x)W a

z (x) dx which is nothing else than Xa(s, z):

Theorem 20. The (analytic) reproducing kernel associated with the space of the completed right
Mellin transforms of the elements of Ka is

Xa(s, z) =

∫∫

[0,+∞)2
e−a(t+ 1

t
+u+ 1

u
) t
s−1uz−1

t+ u
dtdu (170)

Here is a shortened argument: the analytic reproducing kernel Xa(s, z) is the completed right
Mellin transform of X as (x), so this is

∫∞
0 (X as , e−tx)ts−1 dt. But for <(s) > 1

2 , (X as , e−tx) =
Γ(s)(Qa(x

−s1x>a), e−tx) = Γ(s)(x−s1x>a, fat ) = Fat (s) (Qa is the orthogonal projection to Ka).
This gives again (170).
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To proceed further, we compute (s+ z − 1)Xa(s, z). Using integration by parts, multiplication
by s (resp. z) is converted into −t ddt (resp. −u d

du ; there are no boundary terms.)

sXa(s, z) =

∫∫

[0,+∞)2
(a(t− 1

t
) +

t

t+ u
)e−a(t+ 1

t
+u+ 1

u
) t
s−1uz−1

t+ u
dtdu (171a)

zXa(s, z) =

∫∫

[0,+∞)2
(a(u− 1

u
) +

u

t+ u
)e−a(t+ 1

t
+u+ 1

u
) t
s−1uz−1

t+ u
dtdu (171b)

(s+ z − 1)Xa(s, z) = a

∫∫

[0,+∞)2
(t− 1

t
+ u− 1

u
)e−a(t+ 1

t
+u+ 1

u
) t
s−1uz−1

t+ u
dtdu

= a

∫ ∞

0
e−a(t+ 1

t
)ts−1 dt

∫ ∞

0
e−a(u+ 1

u
)uz−1 du

− a
∫ ∞

0
e−a(t+ 1

t
)ts−2 dt

∫ ∞

0
e−a(u+ 1

u
)uz−2 du (171c)

The K-Bessel function is Ks(x) = 1
2

∫∞
0 e−x

1
2

(t+ 1
t
)ts−1 dt =

∫∞
0 e−x coshu cosh(su) du. It is an even

function of s. It has, for each x > 0, all its zeros on the imaginary axis, and was used by Pólya in a
famous work on functions inspired by the Riemann ξ-function and for which he proved the validity
of the Riemann hypothesis [24, 25]. We have obtained the formula

Xa(s, z) =
E(s)E(z)− E(1− s)E(1− z)

s+ z − 1
E(s) = 2

√
aKs(2a) (172)

To confirm Ea(s) = 2
√
aKs(2a), let us define temporarily A(s) = 1

2

√
a
∫∞

0 e−a(t+ 1
t
)(1 + 1

t )t
s−1 dt

and −iB(s) = 1
2

√
a
∫∞

0 e−a(t+ 1
t
)(1− 1

t )t
s−1 dt which are respectively even and odd under s 7→ 1− s

and are such that E(z) = A(z) − iB(z). We have ∀s, z ∈ C −iB(s)A(z) +A(s)(−iB(z)) =
−iBa(s)Aa(z) +Aa(s)(−iBa(z)) and considering separately the even and odd parts in z, we find
that there exists a constant k(a) such that A(s) = k(a)Aa(s) and B(s) = k(a)−1Ba(s). Let us check

that limσ→∞
−iB(σ)
A(σ) = 1. It is a corollary to limσ→∞Kσ(x)/Kσ+1(x) = 0 which is elementary:

∫ 0
−∞ exp(−x coshu)eσu du = O(1) (σ → +∞), and for each T > 0,

∫∞
T exp(−x coshu)eσu du ≥

T exp(−x cosh 3T )e2σT ,
∫ T

0 exp(−x coshu)eσu du ≤ TeσT , and combining we get Kσ(x) = (1 +

o(1))1
2

∫∞
T exp(−x coshu)eσu du. So lim supσ→+∞

Kσ(x)
Kσ+1(x) ≤ e−T for each T > 0. Using (116), we

then conclude k(a) = 1.
Let us examine the equality Ea(s) = 2

√
aKs(2a) =

√
a
∫∞

0 exp(−a(t+ 1
t ))t

s−1 dt. It exhibits
Ea as the left Mellin transform of

√
a exp(−a(t + 1

t )), so the distribution Ea is determined as the

distribution whose Fourier transform is
√
a exp(i a(λ−λ−1)). Using τa and τ#

a , this means exactly:

Ea =
√
a τ#

a τaδ =
√
aHτaHδ(x− a) (173)

We exploit the symmetry Ks = K−s, which corresponds to Ẽa(λ) = Ẽa(−λ−1) = −iλH̃Ea(λ), so
the unexpected identity appears:

Ea =
d

dx
HEa (174)

From (173) we read HEa =
√
aτaJ0(2

√
ax) =

√
aJ0(2

√
a(x− a))1x>a(x). Using (174), and recall-

ing equations (96c) and (96d) we deduce:

φ+
a (x) + φ−a (x)

2
= J0(2

√
a(x− a)) = I0(2

√
a(a− x) (175a)

φ+
a (x)− φ−a (x)

2
=

∂

∂x
J0(2

√
a(x− a)) =

∂

∂x
I0(2

√
a(a− x)) (175b)
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We knew already from equations (66a), (66b)! Summing up we have proven:

Theorem 21. Let H be the self-reciprocal operator with kernel J0(2
√
xy) on L2(0,∞; dx). Let Ha be

the restriction of H to L2(0, a; dx). The solutions to the integral equations φ+
a +Haφ

+
a = J0(2

√
ax)

and φ−a −Haφ
−
a = J0(2

√
ax) are the entire functions:

φ+
a (x) = I0(2

√
a(a− x)) +

∂

∂x
I0(2

√
a(a− x)) (176a)

φ−a (x) = I0(2
√
a(a− x))− ∂

∂x
I0(2

√
a(a− x)) (176b)

One has 1− a = φ+
a (a) = d

da log det(1 +Ha) and 1 + a = φ−a (a) = − d
da log det(1−Ha), and

det(1 +Ha) = e+a− 1
2
a2 (176c)

det(1−Ha) = e−a−
1
2
a2 (176d)

The tempered distributions Aa =
√
a

2 (1 +H)φ+
a and −i Ba =

√
a

2 (−1 +H)φ−a , respectively invariant
and anti-invariant under H, are also given as:

Aa(x) =

√
a

2

(
δa(x) + 1x>a(x)

(
J0(2

√
a(x− a)) +

∂

∂x
J0(2

√
a(x− a))

))
(176e)

−iBa(x) =

√
a

2

(
δa(x)− 1x>a(x)

(
J0(2

√
a(x− a))− ∂

∂x
J0(2

√
a(x− a))

))
(176f)

Their Fourier transforms are
∫
R e

iλxAa(x) dx =
√
a

2 (1+ i
λ) exp(ia(λ− 1

λ)) and −i
∫
R e

iλxBa(x) dx =√
a

2 (1− i
λ) exp(ia(λ− 1

λ)). The Gamma completed right Mellin transforms are:

Γ(s)Âa(s) = Aa(s) =
√
a(Ks(2a) +Ks−1(2a)) (176g)

−iΓ(s)B̂a(s) = −iBa(s) =
√
a(Ks(2a)−Ks−1(2a)) (176h)

Aa(s)− iBa(s) = Ea(s) = 2
√
a Ks(2a) =

√
a

∫ ∞

0
e−a(t+ 1

t
)ts−1 dt (176i)

They verify the first order system, where µ(a) = aφ+(a) + aφ−(a) = 2a:

([
0 1
−1 0

]
a
d

da
−
[

0 µ(a)
µ(a) 0

])[
Aa(s)
Ba(s)

]
= −i(s− 1

2
)

[
Aa(s)
Ba(s)

]
(176j)

The pair
[
Aa(s)
Ba(s)

]
is the unique solution of the first order system which is square-integrable with

respect to d log(a) at +∞. The total reflection against the exponential barriers at log(a) → +∞
of the associated Schrödinger equations realizes +Γ(1−s)

Γ(s) and −Γ(1−s)
Γ(s) (<(s) = 1

2) as scattering
matrices.

From (163) we have Aa(1
2) =

√
π e−2a. To normalize Aa according to Aa(1

2) = 1, we would

have to make the replacement Aa → π−
1
2 e2aAa and Ba →

√
π e−2aBa and the expression of Ea in

terms of the K-Bessel function would be less simple. Let us also note that according to (116) we

must have Kσ−1(2a)
Kσ(2a) ∼σ→+∞ a

σ .

Regarding the isometric expansion, as given in theorem 15, we apply it to a function F (s) =∫∞
0 k(x)x−s dx such that d

dxx k(x) as a distribution on R is in L2. Using the L2-function 1
s Âa(s),
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which is the Mellin transform of the function Ca(x) = 1
x

∫ x
0 Aa(x) dx, and the Parseval identity we

obtain α(u) = 2
∫∞

0 (−x d
dxk(x))Ca(x) dx as an absolutely convergent integral. The square integrable

function Ca(x) is explicitely:

Ca(x) =

√
a

2x
1x>a(x)

(
J0(2

√
a(x− a)) +

√
x− a
a

J1(2
√
a(x− a))

)
(177)

And under the hypothesis made on x d
dxk(x) we obtain the existence of:

α(u) = lim
X→∞

√
ak(a)− 2Xk(X)Ca(X) +

√
a

∫ X

a
k(x)(1 +

∂

∂x
)J0(2

√
a(x− a)) dx (178)

Let us observe that k(x) =
∫∞
x

l(y)
y dy with l(y) ∈ L2, so |k(x)|2 ≤ C

x and Xk(X)Ca(X) = O(X−
1
4 ).

Hence:

α(u) =
√
ak(a) +

√
a

∫ →∞

a
k(x)(1 +

∂

∂x
)J0(2

√
a(x− a)) dx (179)

Comparing with equation (20a) we see that the f(y) defined there is related to α(u) , u = log(a) by
the formula f(y) = 1

2
√
a
α(log(a)), a = y

2 , so |f(y)|2 dy = 1
4a |α(log(a))|22 da = |α(log(a))|2 1

2d log(a).

Similarly we obtain β(u):

β(u) =
√
ak(a) +

√
a

∫ →∞

a
k(x)(−1 +

∂

∂x
)J0(2

√
a(x− a)) dx (180)

and comparing with (20b), g(y) = 1
2
√
a
β(log(a)), |g(y)|2 dy = |β(log(a))|2 1

2d log(a). So according

to theorem 15 we do have equation (20d):

∫ ∞

0
(|f(y)|2 + |g(y)|2) dy =

∫ ∞

0
|k(x)|2 dx (181)

From 15 the assignment k → (α, β) extends to a unitary identification L2(<(s) = 1
2 ; |ds|2π )→̃L2(R→

C2; du2 ), which has the property H(k) → (α,−β). In order to complete the proof of the isometric
expansion, it remains to check the equation (20c) which expresses k in terms of f and g. According

to 15 we recover k(x) has the inverse Mellin transform of
∫
R(α(u) 2Âa(s) + β(u) 2(−iB̂a(s))) du2 .

Expressing this in terms of f(y) and g(y), y = 2a, u = log(a), this means the identity of distri-
butions, where we suppose for simplicity that f(y) and g(y) have compact support in (0,+∞) (as
usual, this means having support away from 0 as well as ∞.):

k(x) =

∫ ∞

0

(
2

√
y

2
f(y) 2A y

2
(x) + 2

√
y

2
g(y) 2(−iB y

2
(x))

)
dy

2y

= 2

∫ ∞

0
(
√
yf(2y)Ay(x) +

√
yg(2y) 2(−iBy(x)))

dy

y

(182)

Then imagining that we are integrating against a test function ψ(x) and using Fubini we obtain:

2

∫ ∞

0

√
yf(2y)Ay(x)

dy

y

=

∫ ∞

0
f(2y)

(
δ(x− y) + 1x>y

(
J0(2

√
y(x− y))−

√
y

x− yJ1(2
√
y(x− y))

))
dy

(183)
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= f(2x) +

∫ x

0

(
J0(2

√
y(x− y))−

√
y

x− yJ1(2
√
y(x− y))

)
f(y) dy

= f(2x) +
1

2

∫ 2x

0

(
J0(
√
y(2x− y))−

√
y

2x− yJ1(
√
y(2x− y))

)
f(y) dy

(184)

Proceeding similarly with g(y) one obtains for 2
∫∞

0

√
yg(2y)(−i By(x))dyy :

g(2x)− 1

2

∫ 2x

0

(
J0(
√
y(2x− y)) +

√
y

2x− yJ1(
√
y(2x− y))

)
f(y) dy (185)

Combining (183) and (185) in the formula (182) for k(x) we obtain equation (20c).

8 The reproducing kernel and differential equations for the ex-
tended spaces

Let La ⊂ L2(0,∞; dx) be the Hilbert space of square integrable functions f which are constant in
(0, a) and with their H-transforms again constant in (0, a). The distribution x d

dx
d
dxx f = d

dxxx
d
dxf

vanishes in (0, a) and its H transform does too. So s(s − 1)f̂(s) is an entire function with trivial
zeros at −N. The Hilbert space of the functions s(s−1)Γ(s)f̂(s) satisfies the axioms of [2]; we prove
everything according to the methods developed in the earlier chapters. Our goal is to determine
the evaluators and reproducing kernel for the spaces La.

For f ∈ La, f̂(s) is a meromorphic function with at most a pole at s = 1 and also f̂(0)
does not necessarily vanish. The Mellin-Plancherel transform

∫∞
0 f(x)x−s dx =

∫ a
0 c(f)x−s dx +∫∞

a f(x)x−s dx has polar part − c(f)
s−1 . Let us write (f, Y1) = −c(f) = Res(f̂(s), s = 1) = s(s −

1)Γ(s)f̂(s)|s=1. This defines an element Y1 ∈ La. We define also Ya1 = Γ(1)Y1 = Y1. Then (f,Ya1 ) =

s(s − 1)Γ(s)f̂(s)|s=1. We also define Ya0 as the vector such that (f,Ya0 ) = s(s − 1)Γ(s)f̂(s)|s=0 =

−f̂(0). One observes (f,H(Y1)) = (H(f), Y1) = s(s − 1)Γ(s)Ĥ(f)(s)|s=1 = s(s − 1)Γ(1 − s)f̂(1 −
s)|s=1 = −f̂(0) = (f,Ya0 ) so Ya0 = H(Ya1 ). To lighten the notation we sometimes write Y1 and Y0

instead Ya1 and Ya0 when no confusion can arise.
We will also consider the vectors X×s ∈ La such that ∀f ∈ La f̂(s) = (X×s , f).30 The orthogonal

projection of X×s to Ka ⊂ La is Xs. Let us look more closely at this orthogonal projection.
First let Na be the (closed) vector space sum L2(0, a; dx) +HL2(0, a; dx). Inside Na we have the
codimension two space Ma defined as the sum of (10<x<a)

⊥ ∩ L2(0, a; dx) and of its image under
H. Finally, let Ra be the orthogonal complement in Na of Ma, which has dimension two. For a
function f to belong to La it is necessary and sufficient that its orthogonal projection to Na be
perpendicular to the functions in L2(0, a; dx) which are perpendicular to 10<x<a, and the same for
the H-transform, so this means exactly that its orthogonal projection to Na belongs to Ra. So we
have the orthogonal decomposition of L2(0,∞; dx) into the sum of the three spaces Ka, Ra and Ma

and La = Ka ⊕Ra. For f ∈ La to be in Ka it is necessary and sufficient that c(f) = −(f,Ya1 ) = 0
and the same for c(H(f)), so this means that {Ya1 ,Ya0 } is a basis of Ra. The function Ya1 belongs
to Na = L2(0, a; dx) +HL2(0, a; dx) and as such is uniquely written as u1 +Hv1. As Ya1 ∈ La we
have constants α, β ∈ C such that:

u1 +Hav1 = −α (186a)

Hau1 + v1 = −β (186b)

30sometimes written Xa×
s .
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where we recall that Pa is the restriction to (0, a) and Ha = PaHPa, Da = H2
a . From what was

said previously α = (Ya1 ,Ya1 ) and β = (H(Ya1 ),Ya1 ) = (Ya0 ,Ya1 ). We have thus:

u1 = (1−Da)
−1(−α10<x<a + βHa(10<x<a)) (186c)

v1 = (1−Da)
−1(+αHa(10<x<a)− β10<x<a) (186d)

Also the function Ya1 may be obtained as the orthogonal projection to La of − 1
a10<x<a. Indeed

it follows from what has been seen above that for any element f ∈ La, (f,Ya1 ) = − 1
a

∫ a
0 f(x) dx. As

the function − 1
a10<x<a already belongs to Na, we have

−1

a
10<x<a = u1 +Hv1 + u2 +Hv2 (187)

where u2 + Hv2 belongs to Ma, which means that u2 ∈ L2(0, a; dx) verifies
∫ a

0 u2(x) dx = 0 and
v2 ∈ L2(0, a; dx) verifies

∫ a
0 v2(x) dx = 0. But there is unicity so we have exactly

u1 + u2 = −1

a
10<x<a v1 + v2 = 0 (188)

And we deduce: ∫ a

0
u1(x) dx = −1

∫ a

0
v1(x) dx = 0 (189)

So α and β are determined as the solutions of the system:

α(10<x<a, (1−Da)
−110<x<a)− β(10<x<a, (1−Da)

−1Ha10<x<a) = 1 (190a)

α(10<x<a, (1−Da)
−1Ha10<x<a)− β(10<x<a, (1−Da)

−110<x<a) = 0 (190b)

We thus have:

Proposition 22. Let p(a) and q(a) be defined as

p(a) =

∫ a

0
(1−Da)

−1(10<x<a)(x) dx (191a)

q(a) =

∫ a

0
(1−Da)

−1Ha(10<x<a)(x) dx (191b)

then: [
p(a) −q(a)
−q(a) p(a)

] [
(Y1,Y1) (Y1,Y0)
(Y0,Y1) (Y0,Y0)

]
=

[
1 0
0 1

]
(191c)

The evaluators Ya1 and Ya0 = H(Ya1 ) are given as u1 +Hv1 and Hu1 + v1 with:

u1 = −(Y1,Y1)(1−Da)
−1(10<x<a) + (Y0,Y1)(1−Da)

−1Ha(10<x<a) (191d)

v1 = −(Y0,Y1)(1−Da)
−1(10<x<a) + (Y0,Y0)(1−Da)

−1Ha(10<x<a) (191e)

We have introduced, for s 6= 0, 1, X×s as the evaluator f̂(s) for functions in La. We shall write
X×s = Γ(s)X×s and then Ys = s(s − 1)X×s . This is compatible with our previous definitions of Ya1
and Ya0 . We note that the orthogonal projection of X×s to Ka is Xs. So we may write

X×s = Xs + λ(s)Ya1 + µ(s)Ya0 (192)
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We shall also write Ya(s, z) =
∫∞

0 Yas (x)Yaz (x) dx = z(z − 1)Γ(z)Ŷas (z). One has H(Yas ) = Ya1−s
and Ya(s, z) = Ya(1− s, 1− z) = Ya(z, s). Taking the scalar products with Ya1 and Ya0 in (192) we
obtain

1

s(s− 1)
Ya(1, s) = λ(s)α+ µ(s)β (193a)

1

s(s− 1)
Ya(1, 1− s) = λ(s)β + µ(s)α (193b)

λ(s) =
1

s(s− 1)
(pYa(1, s)− qYa(1, 1− s)) (193c)

µ(s) =
1

s(s− 1)
(−qYa(1, s) + pYa(1, 1− s)) = λ(1− s) (193d)

Combining with (192), this gives:

Ys = s(s− 1)Xs + Ya(1, s)(pYa1 − qYa0 ) + Ya(1, 1− s)(−qYa1 + pYa0 ) (194)

Let Ta(s) = p(a)Ya(1, s)− q(a)Ya(1, 1− s) (195)

Proposition 23. The (analytic) reproducing kernel Ya(s, z) of the extended space La is given by
each of the following expressions:

s(s− 1)z(z − 1)Xa(s, z) +
[
Ya(1, s) Ya(1, 1− s)

] [ p(a) −q(a)
−q(a) p(a)

] [
Ya(1, z)
Ya(1, 1− z)

]
(196a)

= s(s− 1)z(z − 1)Xa(s, z) +
[
Ta(s) Ta(1− s)

] [α(a) β(a)
β(a) α(a)

] [
Ta(z)

Ta(1− z)

]
(196b)

= s(s− 1)z(z − 1)Xa(s, z) + Ta(s)Ya(1, z) + Ta(1− s)Ya(1− z) (196c)

A very important observation, before turning to the determination of the quantities p(a) and
q(a) shall now be made. Let L be the unitary operator:

L(f)(x) = f(x)− 1

x

∫ x

0
f(y) dy (197)

It is the operator of multiplication by s−1
s at the level of right Mellin transforms. Obviously it

converts functions constant on (0, a) into functions vanishing on (0, a). Let us now consider the
operator

H� = L H L−1 = L2H = HL−2 (198)

It is a unitary, self-adjoint, self-reciprocal, scale reversing operator whose kernel is easily computed
to be

k�(xy) = J0(2
√
xy)− 2

J1(2
√
xy)

√
xy

+
1− J0(2

√
xy)

xy
=
∞∑

n=0

(−1)n
n2xnyn

(n+ 1)!2
(199)

It has L(e−x) = (1+ 1
x)e−x− 1

x as self-reciprocal function; the Mellin transform is s−1
s Γ(1−s) which,

multiplied by s(s − 1) gives (1 − s)2Γ(1 − s) which is the Mellin transform of a more convenient
invariant function for H�, the function x(x − 1)e−x. This function is the analog for H� of e−x for
H. Let us now consider the space L(La). It consists of the square integrable functions vanishing
identically on (0, a) and having H� transforms also identically zero on (0, a). But then the entire
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theory applies toH� exactly as it did forH, up to some minor details in the proofs where the function
J0 was really used like in Lemma 9 or proposition 11. We have for H� versions of all quantities
previously considered for H. To check that the proof of 11 may be adapted, we need to look at

k�1(x) =
∫ x

0 k
�(t) dt =

√
xJ1(2

√
x) + 2(J0(2

√
x)− 1) + 2

∫ 2
√
x

0
1−J0(u)

u du = Ox→+∞(x
1
4 ). So we may

employ lemma 8 as was done for H. Proposition 11 and Theorem 12 thus hold. We must be careful
that the operator L−1 is always involved when comparing functions or distributions related to H�
with those related to H. For example, one has X×s = s

s−1L
−1X�s and Ys = s(s − 1)X×s = L−1X �s .

The two types of Gamma completed Mellin transforms differ: for H we consider Γ(s)f̂(s) while for
H� we consider s2Γ(s)ĝ(s). Indeed this is quite the coherent thing to do in order that:

s2Γ(s)ĝ(s) = s(s− 1)Γ(s)f̂(s) (200)

for g = L(f). The bare Mellin transforms of elements of spaces K�a are not always entire in the
complex plane: they may have a pole at s = 0. After multiplying by s2Γ(s) which is the left
Mellin transform of the self-invariant function x(x− 1)e−x, as Γ(s) is the left Mellin transform of
e−x, we do obtain entire functions, whose trivial zeros are at −1, −2, . . . (0 is not a trivial zero
anymore.) From equation (200) we see that the (analytic) reproducing kernel X �a (s, z) exactly
coincides with the function Ya(s, z) whose initial computation has been given in Proposition 23.

Also the Schrödinger equations will realize ±
(

1−s
s

)2 Γ(1−s)
Γ(s) as scattering matrices, and there will

be an isometric expansion generalizing the de Branges-Rovnyak expansion to the spaces La. We
will determine exactly the functions A�a(s), B�a(s), E�a(s) and especially the function µ�(a). It will
be seen that this is a more complicated function than the simple-minded µ(a) = 2a. . .

The key now is to obtain the functions p(a) and q(a) defined in Proposition 22, and the function
Ya(1, s). It turns out that their computation also involves the quantities (we recall that Ja0 (x) =
J0(2
√
ax)):

r(a) = 1 +

∫ a

0
((1−Da)

−1Ha · Ja0 )(x) dx (201a)

s(a) =

∫ a

0
((1−Da)

−1 · Ja0 )(x) dx (201b)

In order to compute r, s, p, q we shall need the already defined functions φ+
a (= (1 +Ha)

−1Ja0 on
(0, a)), φ−a , (= (1−Ha)

−1Ja0 ) as well as the entire functions ψ+
a and ψ−a verifying:

ψ+
a +HPaψ+

a = 1 (202a)

ψ−a −HPaψ−a = 1 (202b)

We have r(a) = 1+ 1
2

∫ a
0 (−φ+

a (x)+φ−a (x)) dx, and we know explicitely φ±a . But, we shall proceed in
a more general manner. First we recall the differential equations (121a), (121b) which are verified
by φ±a (where δx = x ∂

∂x + 1
2):

a
∂

∂a
φ+
a = +δxφ

−
a − (µ(a) +

1

2
)φ+
a (203a)

a
∂

∂a
φ−a = +δxφ

+
a + (µ(a)− 1

2
)φ−a (203b)

We compute ar′(a) = a−φ
+
a (a)+φ−a (a)

2 + 1
2

∫ a
0 (x ∂

∂x + 1)(φ+
a (x)−φ−a (x)) +µ(a)(φ+

a (x) +φ−a (x)) dx and
simplifying this gives exactly ar′(a) = µ(a)1

2

∫ a
0 (φ+

a (x) + φ−a (x)) dx = s(a). Similarly starting with
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s(a) = 1
2

∫ a
0 (φ+

a (x)+φ−a (x)) dx we obtain as′(a) = 1
2µ(a)+ 1

2

∫ a
0 (x ∂

∂x(φ+
a (x)+φ−a (x))+µ(a)(−φ+

a (x)+
φ−a (x))) dx which gives µ(a)r(a)− s(a). So the quantities r and s verify the system:

ar′(a) = µ(a)s(a) (204a)

(as)′(a) = µ(a)r(a) (204b)

Either solving the system taking into account the behavior as a→ 0 or using the explicit formulas
for φ±a we obtain in this specific instance of the study of H, for which µ(a) = 2a, that r(a) = I0(2a)
and s(a) = I1(2a).

From (202a) and (202b) we obtain two types of differential equations, either involving x ∂
∂x or

a ∂
∂a . From ψ+

a (x) +
∫ a

0 J0(2
√
xy)ψ+

a (x) dx = 1, we obtain (1 +HPa)a ∂
∂aψ

+
a (x) = −aψ+

a (a)Ja0 . We
do similarly with ψ−a and deduce:

a
∂

∂a
ψ+
a (x) = −aψ+

a (a)φ+
a (x) (205a)

a
∂

∂a
ψ−a (x) = +aψ−a (a)φ−a (x) (205b)

Regarding the differential equations with x ∂
∂x , which we shall actually not use, the computation is

done using only the fact that the kernel is a function of xy so x ∂
∂xJ0(2

√
xy) = y ∂

∂yJ0(2
√
xy). We

only state the result:

(x
∂

∂x
+

1

2
)ψ+

a (x) =
1

2
ψ−a (x)− aψ+

a (a)φ−a (x) (206a)

(x
∂

∂x
+

1

2
)ψ−a (x) =

1

2
ψ+
a (x) + aψ−a (a)φ+

a (x) (206b)

Let us now turn to the quantities p(a) and q(a). We have p(a) =
∫ a

0 (1 −Da)
−1(10<x<a)(x) dx =

1
2

∫ a
0 (ψ+

a (x)+ψ−a (x)) dx. So p′(a) = 1
2(ψ+

a (a)+ψ−a (a))− 1
2ψ

+
a (a)

∫ a
0 φ

+
a (x) dx+ 1

2ψ
−
a (a)

∫ a
0 φ
−
a (x) dx.

Reorganizing this gives:

p′(a) =
ψ+
a (a) + ψ−a (a)

2
(1 +

∫ a

0

−φ+
a (x) + φ−a (x)

2
dx) +

−ψ+
a (a) + ψ−a (a)

2

∫ a

0

+φ+
a (x) + φ−a (x)

2
dx

(207)
We remark that from the integral equations defining ψ±a we have ψ+

a (a) = 1−
∫ a

0 J0(2
√
ax)ψ+

a (x) dx =

1−
∫ a

0 φ
+
a (x) dx and ψ−a (a) = 1 +

∫ a
0 J0(2

√
ax)ψ−a (x) dx = 1 +

∫ a
0 φ
−
a (x) dx. So ψ+

a (a)+ψ−a (a)
2 = r(a)

and −ψ
+
a (a)+ψ−a (a)

2 = s(a). Hence the quantity p(a) verifies:

p′(a) = r(a)2 + s(a)2 (208)

With exactly the same method one obtains:

q′(a) = 2r(a)s(a) (209)

Let us observe that q(a) = 1
2

∫ a
0 ((1 − Ha)

−1 − (1 + Ha)
−1)(1) dx = O(a2) and p(a) = 1

2

∫ a
0 ((1 +

Ha)
−1 + (1 −Ha)

−1)(1) dx ∼a→0 a. So (p ± q) ∼a→0 a. Also r(a) ∼a→0 1 and s(a) ∼a→0 a. The
equation for p(a) can be integrated:

p(a) = a(r(a)2 − s(a)2) (210)

Indeed this has the correct derivative. Regarding q(a) the situation is different, one has q′ = 2rs =
2a
µ rr

′ so in the special case considered here, and only in that case we have q(a) = 1
2(r(a)2 − 1).

Summing up:
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Proposition 24. The quantities r(a), s(a), p(a) and q(a) verify the differential equations ar′(a) =
µ(a)s(a), as′(a)+s(a) = µ(a)r(a), p′(a) = r(a)2 +s(a)2, q′(a) = 2r(a)s(a), p(a) = a(r(a)2−s(a)2).
In the special case of the H transform one has:

r(a) = I0(2a) (211a)

s(a) = I1(2a) (211b)

p(a) = a(I2
0 (2a)− I2

1 (2a)) (211c)

q(a) =
1

2
(I2

0 (2a)− 1) (211d)

We now need to determine Ya(1, s) = s(s − 1)Γ(s)Ŷ1(s). There holds Y1 = u1 + Hv1 =

−α10<x<a + 1x>aHv1. So Ŷ1(s) = αa
1−s
s−1 +

∫∞
a (Hv1)(x)x−s dx. Then

∫∞
a (Hv1)(x)x−s dx =∫∞

0 v1(x)gs(x) dx =
∫ a

0 v1(x)gs(x) dx, where the function gs from (73) has been used. Recalling
from (76a), (76b) the analytic functions us, equal to −(1−Da)

−1Ha(gs) on (0, a), and vs, equal to
(1−Da)

−1Pa(gs) on (0, a), and using (186d) and self-adjointness we obtain

∫ a

0
v1(x)gs(x) dx = −α

∫ a

0
us(x) dx− β

∫ a

0
vs(x) dx (212)

Let us now recall that we computed ((83a)) (x ∂
∂x + s)us and found it to be on the interval (0, a)

given as −avs(a)(1 − Da)
−1(Ja0 ) − a(a−s + us(a))(1 − Da)

−1Ha(J
a
0 ). Integrating and also using

equations (99) and (102) we obtain

√
aÊa(s)− a1−s + (s− 1)

∫ a

0
us(x) dx = −√aĤ(Ea)(s)s(a)−√aÊa(s)(r(a)− 1) (213)

∫ a

0
us(x) dx =

√
a
a

1
2
−s − Êa(s)r(a)− Ĥ(Ea)(s)s(a)

s− 1
(214)

We have similarly ((83b)) (x ∂
∂x+1−s)vs = −√aÊa(s)(1−Da)

−1(Ja0 )−√aĤ(Ea)(s)(1−Da)
−1Ha(J

a
0 )

so integration gives avs(a)− s
∫ a

0 vs(x) dx = −√aÊa(s)s(a)−√aĤ(Ea)(s)(r(a)− 1) hence

∫ a

0
vs(x) dx =

√
a
Êa(s)s(a) + Ĥ(Ea)(s)r(a)

s
(215)

Combining (214), (215) with (212), and using Ya(1, s) = s(s− 1)Γ(s)Ŷ a
1 (s):

Ŷ1(s) =
√
a Êa(s)

(α(a)r(a)

s− 1
− β(a)s(a)

s

)
+
√
a Ĥ(Ea)(s)

(α(a)s(a)

s− 1
− β(a)r(a)

s

)
(216a)

Ya(1, s) =
√
a
(
sα(a)(Ea(s)r(a) + Ea(1− s)s(a)) + (1− s)β(a)(Ea(s)s(a) + Ea(1− s)r(a))

)

(216b)

Proposition 25. The functions Ya(1, s) and Ya(1, 1− s) verify

[
Ya(1, s)
Ya(1, 1− s)

]
=
√
a

[
α(a) β(a)
β(a) α(a)

] [
s(Ea(s)r(a) + Ea(1− s)s(a))

(1− s)(Ea(s)s(a) + Ea(1− s)r(a))

]
(217)

Comparing with equation (195) we get: Ta(s) =
√
as(Ea(s)r(a) + Ea(1− s)s(a)). So:
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Theorem 26. The analytic reproducing kernel Ya(s, z) associated with the extended spaces La is:

Ya(s, z) = s(s− 1)z(z − 1)Xa(s, z) +
[
Ta(s) Ta(1− s)

] [α(a) β(a)
β(a) α(a)

] [
Ta(z)

Ta(1− z)

]
(218a)

Xa(s, z) =
Ea(s)Ea(z)− Ea(1− s)Ea(1− z)

s+ z − 1
Ea(s) = 2

√
aKs(2a) (218b)

Ta(s) =
√
a s (Ea(s)r(a) + Ea(1− s)s(a)) r(a) = I0(2a) s(a) = I1(2a) (218c)

α(a) =
p(a)

p(a)2 − q(a)2
p(a) = a(I2

0 (2a)− I2
1 (2a)) (218d)

β(a) =
q(a)

p(a)2 − q(a)2
q(a) =

1

2
(I2

0 (2a)− 1) (218e)

We proceed now to the determination of A�a, B�a and E�a = A�a(s)− iB�a(s). The function A�a(s)
is even under s→ 1− s and B�a(s) is odd. We must have:

zYa(1, z) = 2(−iB�a(1))A�a(z) + 2A�a(1)(−iB�a(z)) (219)

On the other hand from (195) we have Ya(1, z) = αTa(z) + βTa(1− z). Let us write

z Ta(z) =
√
a(z(z − 1)r(a)Ea(z) + zr(a)Ea(z)

+ z(z − 1)s(a)Ea(1− z) + zs(a)Ea(1− z)) (220)

z Ta(1− z) =
√
a(−z(z − 1)s(a)Ea(z)− z(z − 1)r(a)Ea(1− z)) (221)

zYa(1, z) =
√
a
(
z(z − 1)((αr − βs)Ea(z) + (αs− βr)Ea(1− z))

+ zα(r Ea(z) + sEa(1− z))
)

(222)

Extracting the even part (zYa(1, z))+ and the odd part (zYa(1, z))−:

(zYa(1, z))+ =
√
a
(
z(z − 1)(α− β)(r + s)Aa + (z − 1

2
)α(r − s)(−iBa) +

1

2
α(r + s)Aa

)
(223)

(zYa(1, z))− =
√
a
(
z(z − 1)(α+ β)(r − s)(−iBa) + (z − 1

2
)α(r + s)Aa +

1

2
α(r − s)(−iBa)

)
(224)

We have (zYa(1, z))+ = 2(−iB�a(1))A�a(z) and (zYa(1, z))− = 2A�a(1)(−iB�a(z)). Let us define
K(a) = (2(−iB�a(1)))−1 and L(a) = (2A�a(1))−1. We know that:

lim
σ→+∞

−iB�a(σ)

A�a(σ)
= 1 (225)

So it must be that
K(a)(α− β)(r + s) = L(a)(α+ β)(r − s) (226)

Also, taking z = 1 in (223) we have 1
KL = 2

√
a1

2α (rEa(1) + sEa(0)) = αTa(1). But referring to
(195) one has Ta(1) = pα− qβ = 1. So:

K(a)L(a) =
1

α(a)
(227)
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Then:

K(a)2 =
1

α(a)

(α+ β)(r − s)
(α− β)(r + s)

=
α2 − β2

α(a)

r2 − s2

(α− β)2(r + s)2
=

1

p

p

a

1

(α− β)2(r + s)2
(228)

(α− β)(r + s)K(a) = a−
1
2 (229)

We conclude:

A�a = z(z − 1)Aa + (z − 1

2
)

α(r − s)
(α− β)(r + s)

(−iBa) +
α

2(α− β)
Aa (230a)

−iB�a = z(z − 1)(−iBa) + (z − 1

2
)

α(r + s)

(α+ β)(r − s)Aa +
α

2(α+ β)
(−iBa) (230b)

Let us now observe that α
α±β = p

p±q and further:

α

α− β
r − s
r + s

=
p

p− q
a(r − s)2

p
= a

p′ − q′
p− q = a

d

da
log(p− q) (231a)

α

α+ β

r + s

r − s =
p

p+ q

a(r + s)2

p
= a

p′ + q′

p+ q
= a

d

da
log(p+ q) (231b)

A�a(z) = (z(z − 1) +
1

2

p

p− q )Aa(z) + a
d

da
log(p− q)(z − 1

2
)(−iBa(z)) (232a)

−iB�a(z) = (z(z − 1) +
1

2

p

p+ q
)(−iBa(z)) + a

d

da
log(p+ q)(z − 1

2
)Aa(z) (232b)

Combining we get finally:

Theorem 27. The E function associated with the entire functions s(s− 1)Γ(s)f̂(s), f ∈ La is:

E�a(z) =
(
z(z − 1) +

1

2
a
d

da
log(p(a)2 − q(a)2)(z − 1

2
) +

1

2
p(a)α(a)

)
Ea(z)

+
(1

2
a
d

da
log

p(a) + q(a)

p(a)− q(a)
(z − 1

2
) +

1

2
p(a)β(a)

)
Ea(1− z)

(233)

where p(a) = a(I2
0 (2a)− I2

1 (2a)), q(a) = 1
2(I2

0 (2a)− 1), α(a) = p(a)
p(a)2−q(a)2

, β(a) = q(a)
p(a)2−q(a)2

, and

Ea(z) = 2
√
aKz(2a).

We shall now obtain by two methods the function µ�(a). First, we compute E�a(1
2) = (−1

4 +
1
2p(α+ β))Ea(1

2) = 1
4
p+q
p−qEa(1

2) and invoke a d
daE�a(1

2) = −µ�(a)E�a(1
2). We thus have:

Theorem 28. The mu function for the chain of spaces La, 0 < a <∞ is

µ�(a) = µ(a) + a
d

da
log

p− q
p+ q

(234)

= 2a+ a
d

da
log

(2a− 1)I2
0 (2a)− 2aI2

1 (2a) + 1

(2a+ 1)I2
0 (2a)− 2aI2

1 (2a)− 1
(235)

= 2a− 2 + o(1) (a→ +∞) (236)
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The asymptotic behavior is a corollary to lima→∞ 2a−pq
′+qp′

p2−q2 = −2 which itself follows from

p2 − q2 ∼ 1
4I0(2a)4 1

16a2
and ( qp)′ ∼ + 1

16a3
which are easily deduced from the asymptotic expansion

I0(x) = ex√
2πx

(1 + 1
8x + 9

128x2
+ . . . ) ([33]). Of course the o(1) is in fact an O(a−1).

The second method to obtain µ�(a) relies on E
�
a(1−σ)
E�a(σ) ∼σ→+∞

µ�(a)
2σ ((116)). We have:

E�a(σ)

σ2Ea(σ)
= 1 +

1
2a

d
da log(p2 − q2)− 1

σ
+O(

1

σ2
) (237a)

E�a(1− σ)

σ2Ea(1− σ)
→σ→∞ 1− 1

2
(a
d

da
log

p+ q

p− q )
2

µ(a)
(237b)

so µ�(a)
µ(a) = 1 − 1

µ(a)a
d
da log p+q

p−q and (234) is confirmed. We can use this method to gather more

information. From (115a) we have, as <(s)→ +∞:

Êa(s) = a
1
2
−s(1 +

aφ+(a)− aφ−(a)

2s
+O(

1

s2
)) (238a)

Ê�a(s) = a
1
2
−s(1 +

aφ�+(a)− aφ�−(a)

2s
+O(

1

s2
)) (238b)

Let us be careful that Ea(s) = Γ(s)Êa(s) while E�a(s) = s2Γ(s)Ê�a(s). We obtain:

aφ�+(a)− aφ�−(a) = aφ+(a)− aφ−(a) + a
d

da
log(p2 − q2)− 2 (239a)

aφ�+(a) = aφ+(a) + a
d

da
log

p− q
a

(239b)

aφ�−(a) = aφ−(a)− a d
da

log
p+ q

a
(239c)

We recall that (p± q) ∼a→0 a. We integrate (239b) and (239c) using (130a), (130b) and this gives
det(1 +H�a) = p−q

a det(1 +Ha) and det(1−H�a) = p+q
a det(1−Ha).

det(1 +H�a) =
p− q
a

det(1 +Ha) = det(1 +Ha)
1

a

∫ a

0
(r − s)2 da (240a)

det(1−H�a) =
p+ q

a
det(1−Ha) = det(1−Ha)

1

a

∫ a

0
(r + s)2 da (240b)

Theorem 29. Let H� = LHL−1 be the self-reciprocal operator on L2(0,∞; dx) with kernel:

J0(2
√
xy)− 2

J1(2
√
xy)

√
xy

+
1− J0(2

√
xy)

xy
=
∞∑

n=0

(−1)n
n2xnyn

(n+ 1)!2
(241a)

and let H�a be the restriction to L2(0, a; dx). Then:

det(1 +H�a) = e+a− 1
2
a2 1

a

∫ a

0
(I0(2a)− I1(2a))2 da = e+a− 1

2
a2
(
I2

0 (2a)− I2
1 (2a)− I2

0 (2a)− 1

2a

)

(241b)

det(1−H�a) = e−a−
1
2
a2 1

a

∫ a

0
(I0(2a) + I1(2a))2 da = e−a−

1
2
a2
(
I2

0 (2a)− I2
1 (2a) +

I2
0 (2a)− 1

2a

)

(241c)
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From theorem 26 ‖Y 1
2
‖2 = 1

16‖X 1
2
‖2 + 2(α + β)Ta(

1
2)2 and Ta(

1
2) = 1

2

√
a (r + s)Ea(1

2). Also,

(α + β)(r + s)2 = 1
p−q (r + s)2. Furthermore ‖Y 1

2
‖2 = 1

16Γ(1
2)2‖X�1

2

‖2 = π
16‖X�1

2

‖2 and ‖X 1
2
‖2 =

π‖X 1
2
‖2. And also from (163) Ea(1

2) =
√
π det(1−Ha)

det(1+Ha) and from theorem 17 one has ‖Xa
1
2

‖2 =

2
∫∞
a

(
det 1−Hb

1+Hb

)2
db
b and the analog holds for X�a1

2

. Let us observe that X�a1
2

= −LX×1
2

so ‖X�a1
2

‖ =

‖Xa×
1
2

‖. So

‖Xa×
1
2

‖2 = 2

∫ ∞

a

(
det

1−H�b
1 +H�b

)2 db

b
= 2

∫ ∞

a

(
det

1−Hb

1 +Hb

)2 db

b
+8a

p′ + q′

p− q

(
det

1−Ha

1 +Ha

)2

(242)

Theorem 30. Let La be the Hilbert space of square integrable functions on f ∈ L2(0,∞; dx) such
that both f and H(f) =

∫∞
0 J0(2

√
xy)f(y) dy are constant on (0, a). Then the squared norm of the

linear form f 7→
∫∞

0
f(x)√
x
dx is given by either one of the following two expressions:

2

∫ ∞

a

(
(2b+ 1)I2

0 (2b)− 2bI2
1 (2b)− 1

(2b− 1)I2
0 (2b)− 2bI2

1 (2b) + 1

)2
e−4b

b
db (243a)

= 2

∫ ∞

a

e−4b

b
db+ 2

8a(I0(2a) + I1(2a))2

(2a− 1)I2
0 (2a)− 2aI2

1 (2a) + 1
e−4a (243b)

The squared norm of the restriction of the linear form to the subspace Ka of functions vanishing
on (0, a) and with H(f) also vanishing on (0, a) is 2

∫∞
a

e−4b

b db.

One may express the wish to verify explicitely from equations (230a) and (230b), or in the
equivalent form

A�a(z) =
(

(z − 1

2
)2 +

1

4

p+ q

p− q
)
Aa(z) + (a

d

da
log(p− q))(z − 1

2
)(−iBa(z)) (244a)

−iB�a(z) =
(

(z − 1

2
)2 +

1

4

p− q
p+ q

)
(−iBa(z)) + (a

d

da
log(p+ q))(z − 1

2
)Aa(z) (244b)

the differential system:

a
∂

∂a
A�a(z) = −µ�(a)A�a(z)− (z − 1

2
)(−iB�a(z)) (245a)

a
∂

∂a
(−iB�a(z)) = +µ�(a)(−iB�a(z))− (z − 1

2
)A�a(z) (245b)

and also to verify explicitely the reproducing kernel formula

Ya(s, z) =
E�a(s)E�a(z)− E�a(1− s)E�a(1− z)

s+ z − 1
(246)

The interested reader will see that the algebra has a tendency to become slightly involved if one
does not benefit from the following preliminary observations: using p′ = r2 +s2, q′ = 2rs, ar′ = µr,
as′ = µr − s, p = a(r2 − s2) one first establishes aq′′ + q′ = 2µp′, ap′′ + p′ − p

a = 2µq′. Using this
one checks easily:

(
p′ + q′

p+ q

)′
+

(
p′ + q′

p+ q

)2

=
1

a2

p

p+ q
+

2µ− 1

a

p′ + q′

p+ q
(247a)

(
p′ − q′
p− q

)′
+

(
p′ − q′
p− q

)2

=
1

a2

p

p− q −
2µ+ 1

a

p′ − q′
p− q (247b)
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Also the identity
p2

p2 − q2
= a

p′ + q′

p+ q
a
p′ − q′
p− q = pα (247c)

is useful. The verifications may then be done.

9 Hyperfunctions in the study of the H transform

In this final section we return to the equation (31):

ψ̃(f)(i t) =
t+ 1

2t
f̃(i

t+ 1
t

2
) , (248)

Let us recall that f ∈ L2(0,∞; dx) and ψ : L2(0,∞; dx) → L2(0,∞; dx) is the isometry which
corresponds to F (w) 7→ F (w2), where F (w) =

∑∞
n=0 cnw

n, f(x) =
∑∞

n=0 cnPn(x)e−x, Pn(x) =

L
(0)
n (2x). Let g = ψ(f). Using λ = it, in the L2 sense:

g(x) =
1

2π

∫ ∞

−∞

λ+ i

2λ
f̃(
λ− 1

λ

2
)e−iλx dλ (249)

It is natural to consider separately λ > 0 and λ < 0. So let us define:

G+(x) =
1

2π

∫ 0

−∞

λ+ i

2λ
f̃(
λ− 1

λ

2
)e−iλx dλ (250a)

G−(x) = − 1

2π

∫ ∞

0

λ+ i

2λ
f̃(
λ− 1

λ

2
)e−iλx dλ (250b)

We observe that G+ is in the Hardy space of =(x) > 0 and G− is in the Hardy space of =(x) < 0.
Their boundary values must coincide on (−∞, 0) as g ∈ L2(0,+∞; dx). So we have a single
analytic function G(z) on C \ [0,+∞) with G = G+ for =(x) > 0 and G = G− for =(x) < 0. Then
g = ψ(f) = G+ −G− is computed as

g(x) = G(x+ i0)−G(x− i0) (251)

In other words g is most naturally seen as a hyperfunction [23], as a difference of boundary values
of analytic functions. We shall now compute it explicitely, and also we will show later that this
observation extends to the distributions Aa(x), −iBa(x), Ea(x) which are associated with the study
of the H transform. The point of course is that the corresponding functions G will for them have
a simple natural expression.

We have, for =(z) > 0:

G(z) =
1

2π

∫ ∞

0

λ− i
2λ

f̃(
−λ+ 1

λ

2
)e+iλz dλ (252a)

G(z) =
1

2π

∫ ∞

0

λ− i
2λ

(∫ ∞

0
ei

1
2
x(−λ+ 1

λ
)f(x) dx

)
e+iλz dλ (252b)

Let µ = 1
2(λ− 1

λ), λ = µ+
√

1 + µ2, λ−i
2λ dλ = λ

λ+i dµ, with, for 0 < λ <∞, −∞ < µ <∞.

G(z) =
1

2π

∫ ∞

−∞

λ

λ+ i

(∫ ∞

0
e−iµxf(x) dx

)
e+iλz dµ (252c)
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For µ→ +∞, λ = 2µ+ 1
2µ+. . . , and for µ→ −∞, λ = − 1

2µ+. . . , and λ
λ+i ∼ i

2µ as µ→ −∞. So far

the inner integral is in the L2 sense. We shall now suppose that f and f ′ are in L1 (so limx→∞ f(x) =

0) and write
∫∞

0 e−iµxf(x) dx =
∫∞

0 e−iµx−xexf(x) dx = f(0)
iµ+1 + 1

iµ+1

∫∞
0 e−iµx(f(x) + f ′(x)) dx.

G(z) =
1

2π

(
f(0)

∫ ∞

−∞

λ

λ+ i

e+iλz

iµ+ 1
dµ+

∫ ∞

−∞

λ

λ+ i

e+iλz

iµ+ 1

(∫ ∞

0
e−iµx(f(x) + f ′(x)) dx

)
dµ

)

(252d)
In this manner, with f ∈ L1, f ′ ∈ L1, =(z) > 0, we have an absolutely convergent double integral.

G(z) =
1

2π

(
f(0)

∫ ∞

−∞

λ

λ+ i

e+iλz

iµ+ 1
dµ+

∫ ∞

0

(∫ ∞

−∞

λ

λ+ i

e−iµx+iλz

iµ+ 1
dµ

)
(f(x) + f ′(x)) dx

)

(252e)

Observing 1
2π

∫∞
−∞

λ
λ+i

e+iλz

iµ+1 dµ = 1
2π

∫∞
0

λ−i
2λ

1
iµ+1e

+iλz dλ = 1
2πi

∫∞
0

1
λ−ie

+iλz dλ, we then suppose
<(z) < 0, =(z) > 0 (or =(z) ≥ 0) so that we may rotate the contour to λ = −it, 0 ≤ t <∞. This
procedure gives thus:

1

2π

∫ ∞

−∞

λ

λ+ i

e+iλz

iµ+ 1
dµ =

1

2πi

∫ ∞

0

etz

1 + t
dt (252f)

Also:
1

2π

∫ ∞

−∞

λ

λ+ i

e−iµx+iλz

iµ+ 1
dµ =

1

2πi

∫ ∞

0

1

λ− ie
−ix

2
(λ− 1

λ
)+iλz dλ (252g)

We rotate the contour to λ ∈ i[0,−∞), which is licit as x ≥ 0 and, for <(z) < 0, x ≥ 0, we obtain:

1

2πi

∫ ∞

0

ezt−
x
2

(t+ 1
t
)

1 + t
dt (252h)

Going back this allows to write (252e), for <(z) < 0, =(z) > 0 as:

G(z) =
1

2πi

(
f(0)

∫ ∞

0

ezt

1 + t
dt+

∫ ∞

0

(∫ ∞

0

ezt−
x
2

(t+ 1
t
)

1 + t
dt

)
(f(x) + f ′(x)) dx

)
(252i)

and finally, after integrating by parts:

G(z) =
1

2πi

∫ ∞

0

(∫ ∞

0

1

2
(1 +

1

t
)ezt−

1
2
y(t+ 1

t
) dt

)
f(y) dy (252j)

This last expression (still temporarily under the hypothesis f, f ′ ∈ L1) is certainly a priori absolutely
convergent for <(z) < 0 and gives G(z) in this half-plane.

We are led to the study of:

a(z, y) =
1

2πi

∫ ∞

0

1

2
(1 +

1

t
)ezt−

1
2
y(t+ 1

t
) dt (253a)

We still temporarily assume <(z) < 0. We even suppose z < 0 and make a change of variable:

a(z, y) =
1

2πi

(√
y

y − 2z

1

2

∫ ∞

0
e−

1
2

√
y(y−2z)(u+ 1

u
) du+

1

2

∫ ∞

0
e−

1
2

√
y(y−2z)(u+ 1

u
) 1

u
du

)
(253b)

a(z, y) =
1

2πi

(√
1

y − 2z

1

2

∫ ∞

0
e−

1
2

√
y−2z(v+y 1

v
) dv +

1

2

∫ ∞

0
e−

1
2

√
y−2z(v+y 1

v
) 1

v
dv

)
(253c)
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a(z, y) =
1

2πi

(√
y

y − 2z
K1(

√
y(y − 2z)) +K0(

√
y(y − 2z))

)
(253d)

For any z ∈ C \ [0,+∞) and any y ≥ 0 the integrals in (253c) converge absolutely and define an
analytic function of z. Furthermore the K Bessel functions decrease exponentially as y → +∞
in (253d). For fixed z, a(z, y) is certainly a square-integrable function of y (also at the origin),
locally uniformly in z so the equation (252j) defines G as an analytic function on the entire domain
C \ [0,+∞). Then by an approximation argument (252j) applies to any f ∈ L2(0,∞; dx) and any
z ∈ C \ [0,+∞).

We now study the boundary values a(x+i0, y), a(x−i0, y), x, y ≥ 0. We could use the expression
of the K Bessel functions in terms of the Hankel functions H(1) and H(2), go to the boundary, and
then recover the Bessel functions J0 and J1. But we shall proceed in a more direct manner. Let us
first examine

d(z, y) =
1

2πi

1

2

∫ ∞

0
ezt−

1
2
y(t+ 1

t
) 1

t
dt

=
1

2πi

1

2

∫ ∞

0
e−

1
2

√
y(y−2z)(u+ 1

u
) 1

u
du =

1

2πi

∫ ∞

1
e−
√
y(y−2z) t dt√

t2 − 1

(254a)

=
1

2πi

∫ ∞

1
e−
√
y(y−2z) t t−1 dt+

1

2πi

∫ ∞

1
e−
√
y(y−2z) t(

1√
t2 − 1

− 1

t
) dt (254b)

=
1

2πi

e−
√
y(y−2z) −

∫∞
1 e−

√
y(y−2z) t t−2 dt√

y(y − 2z)
+

1

2πi

∫ ∞

1
e−
√
y(y−2z) t(

1√
t2 − 1

− 1

t
) dt (254c)

We now look at the (distributional) boundary values z → x with z = x+ iε, ε→ 0+ or z = x− iε
and ε→ 0+. We shall take x > 0. Here the singularities at y = 2x and at y = 0 are integrable and
we need only take the limit in the naive sense. We distinguish y > 2x from 0 < y < 2x. In the
former case, nothing happens:

d(x+ i0, y) = d(x− i0, y) =
1

2πi

∫ ∞

1
e−
√
y(y−2x) t dt√

t2 − 1
(255a)

In the latter case:

d(x+ i0, y) =
1

2π

e+i
√
y(2x−y) −

∫∞
1 e+i

√
y(2x−y) t t−2 dt√

y(2x− y)
+

1

2πi

∫ ∞

1
e+i
√
y(2x−y) t(

1√
t2 − 1

− 1

t
) dt

(255b)

d(x− i0, y) = − 1

2π

e−i
√
y(2x−y) −

∫∞
1 e−i

√
y(2x−y) t t−2 dt√

y(2x− y)
+

1

2πi

∫ ∞

1
e−i
√
y(2x−y) t(

1√
t2 − 1

− 1

t
) dt

(255c)
So d(x+ i0, y)− d(x− i0, y) is supported in (0, 2x) and has values there

1

π

cos
√
y(2x− y)−

∫∞
1 cos(

√
y(2x− y) t) t−2 dt√

y(2x− y)
+

1

π

∫ ∞

1
sin(

√
y(2x− y) t)(

1√
t2 − 1

− 1

t
) dt

(255d)
We used this method to have a clear control not only of the pointwise behavior but also of the limit
as a distribution. There is no necessity now to keep working with absolutely convergent integrals
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and we have the simple result, using the very classical Mehler formula:31

d(x+ i0, y)− d(x− i0, y) = 10<y<2x(y)
1

π

∫ ∞

1

sin(
√
y(2x− y) t)√
t2 − 1

dt =
1

2
10<y<2x(y)J0(

√
y(2x− y))

(256)
Let us now consider the behavior of

e(z, y) =
1

2πi

1

2

∫ ∞

0
ezt−

1
2
y(t+ 1

t
) dt =

1

2πi

√
y

y − 2z

1

2

∫ ∞

0
e−

1
2

√
y(y−2z)(u+ 1

u
) du (257)

We make the simple observation that e(z, y) = ∂
∂zd(z, y). So we shall have (as is confirmed by a

more detailed examination):

e(x+ i0, y)− e(x− i0, y) =
∂

∂x

1

2
10<y<2x(y)J0(

√
y(2x− y))

= δ2x(y)− 1

2
10<y<2x(y)

√
y

2x− yJ1(
√
y(2x− y))

(258)

Combining all those elements we obtain that the function k(x) = ψ(f)(x) is given as:

k(x) = f(2x) +
1

2

∫ 2x

0
J0(
√
y(2x− y))f(y) dy − 1

2

∫ 2x

0

√
y

2x− yJ1(
√
y(2x− y))f(y) dy (259)

Some pointwise regularity of f at x is necessary to fully justify the formula; in order to check if
continuity of f at 2x is enough we can not avoid examining e(z, y) more closely as z → x.

e(z, y) =

√
y

y − 2z

1

2πi

∫ ∞

1
e−
√
y(y−2z) t t dt√

t2 − 1

=
1

2πi

e−
√
y(y−2z)

y − 2z
+

√
y

y − 2z

1

2πi

∫ ∞

1
e−
√
y(y−2z) t t−

√
t2 − 1√

t2 − 1
dt

(260)

The integral term on the right causes no problem at all. And writing e−
√
y(y−2z)

y−2z = 1
y−2z +

e−
√
y(y−2z)−1
y−2z , again the term on the right has no problem, so there only remains 1

y−2z , and of
course, this is very well-known, the difference between +i0 and −i0 gives the Poisson kernel, so for
non-tangential convergence, continuity of f at 2x is enough. Of course this discussion was quite
superfluous if we wanted to understand k as an L2 function, here we have the information that non
tangential boundary value of G(x + i0) − G(x − i0) does give pointwise the formula (259) if f is
continuous at y = 2x. We can also rewrite (259) as:

k(x) = (1 +
d

dx
)
1

2

∫ 2x

0
J0(
√
y(2x− y))f(y) dy (261)

This is exactly one half of equation (20c), where k was obtained from (f, g) as ψ(f) + w · ψ(g).
Let us observe that w = λ−i

λ+i verifies, as an operator, ( d
dx + 1) · w = w · ( d

dx + 1) = d
dx − 1.

So the isometry corresponding to g(w) 7→ wG(w2), which is the composite w · ψ, sends g to
(−1 + d

dx)1
2

∫ 2x
0 J0(

√
y(2x− y))f(y) dy. This is indeed the second half of equation (20c).

The formulas (20a) and (20b) may be established in an exactly analogous manner (taking k
with compact support to simplify the discussion). But this would be a repetition of the arguments

31we are mainly interested in the boundary value as a distribution and we skip the discussion of the pointwise
behavior at the borders y = 0 and y = 2x.
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we just went through, so rather I will conclude the paper with a method allowing to go directly
from Aa(s), −iBa(s), Ea(s) to the distributions Aa(x), −iBa(x), Ea(x), and this will show that
they are in a natural manner (differences of) boundary values of an analytic function.

From the expression Ea(s) = Γ(s)Êa(s) = 2
√
aKs(2a) =

√
a
∫∞

0 e−a(t+ 1
t
)ts−1 dt, we shall recover

Êa(s) as a right Mellin transform with the help of the Hankel formula Γ(s)−1 =
∫
C e

vv−s dv, where C
is a contour coming from −∞ along the lower edge of the cut along (−∞, 0] turning counterclockwise
around the origin and going back to −∞ along or slightly above the upper edge of the cut. Let us
write the Hankel formula as

ts−1

Γ(s)
=

1

2πi

∫

C
etvv−s dv (t > 0) (262)

So we have:

Êa(s) =
√
a

1

2πi

∫ ∞

0

(∫

C
etvv−s dv

)
e−a(t+ 1

t
) dt (263)

Let us suppose <(s) > 1. Then the contour C can be deformed into the contour Cε coming from
−i∞ to −iε, then turning counterclockwise from e−i

π
2 ε to ei

π
2 ε, then going to +i∞. Also we impose

0 < ε < a. The integrals may then be permuted:

Êa(s) =
√
a

1

2πi

∫

Cε

(∫ ∞

0
etve−a(t+ 1

t
) dt

)
v−s dv (264)

and using e(z, y) from (257) this gives:

<(s) > 1 =⇒ Êa(s) =
√
a

∫

Cε
2e(v, 2a)v−s dv (265)

We have previously studied e(z, y), which is also expressed as in (260). We see on this basis and
simple estimates that we may deform Cε into a contour Ca,η going from +∞ to a+η along the lower
border, turning clockwise around a from a+ η − i0 to a+ η + i0, then going from a+ η to +∞ on
the upper border (η � 1). We will have in particular from (260) a term 2

2πi

∫ a+η+i0
a+η−i0

v−s
2a−2v dv which

is a−s. The final result is obtained:

<(s) > 1 =⇒ Êa(s) =
√
a

(
a−s −

∫ ∞

a

√
a

x− aJ1(2
√
a(x− a))x−s dx

)
(266)

This identifies Êa(s) as the right Mellin transform of the distribution

Ea(x) =
√
a

(
δa(x) + 1x>a(x)

∂

∂x
J0(2

√
a(x− a))

)
=
√
a
∂

∂x

(
1x>a(x)J0(2

√
a(x− a))

)
(267)

This proof reveals that the distribution Ea(x) is expressed in a natural manner as the difference of
boundary values

√
a(2e(x+ i0, 2a)− 2e(x− i0, 2a)), with

√
a 2e(z, 2a) =

√
a

1

2πi

∫ ∞

0
ezt−a(t+ 1

t
) dt =

√
a

1

2πi
2

√
a

a− z K1(2
√
a(a− z)) (268)

The formulas (176e) and (176f) are recovered in the same manner.
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Theorem 31. The distribution Aa(x) =
√
a

2 (1 +H)(φ+
a 10<x<∞), φ+

a (x) +
∫ a

0 J0(2
√
xy)φ+

a (y) dy =
J0(2
√
ax), is the difference of boundary values

√
a(a(x+ i0, 2a)− a(x− i0, 2a)), with:

√
a a(z, 2a) =

√
a

1

2πi

∫ ∞

0

1

2
(1 +

1

t
)ezt−a(t+ 1

t
) dt

=
√
a

1

2πi

(√
a

a− z K1(2
√
a(a− z)) +K0(2

√
a(a− z))

) (269)

The distribution −iBa(x) =
√
a

2 (−1 +H)(φ−a 10<x<∞), φ−a (x)−
∫ a

0 J0(2
√
xy)φ−a (y) dy = J0(2

√
ax),

is the difference of boundary values
√
a(−ib(x+ i0, 2a)− (−ib(x− i0, 2a))), with:

√
a(−ib(z, 2a)) =

√
a

1

2πi

∫ ∞

0

1

2
(1− 1

t
)ezt−a(t+ 1

t
) dt

=
√
a

1

2πi

(√
a

a− z K1(2
√
a(a− z))−K0(2

√
a(a− z))

) (270)

10 Appendix: a remark on the resolvent of the Dirichlet kernel

In this paper we have studied a special transform on the positive half-line with a kernel of a
multiplicative type k(xy), following the method summarized in [5, 6]. We have associated to the
kernel the investigation of its Fredholm determinants on finite intervals (0, a), and have related them
with first and second order differential equations leading to problems of spectral and scattering
theory. There is a vast literature on kernels of the additive type k(x − y), and on the related
Fredholm determinants on finite intervals. The Dirichlet kernel on L2(−s, s; dx):

Ks(x, y) =
sin(x− y)

π(x− y)
(271)

has been the subject of many works (only a few references will be mentioned here.) The Fredholm
determinant det(1 − Ks), as a function of s (or more generally as a function of the endpoints of
finitely many intervals), has many properties, and is related to the study of random matrices [22].
The Fredholm determinants of the even and odd parts

K±s (x, y) =
sin(x− y)

π(x− y)
± sin(x+ y)

π(x+ y)
(272)

on L2(0, s; dx) have been studied by Dyson [16]. He used the second derivatives of their logarithms
to construct potentials for Schrödinger equations on the half-line, and studied their asymptotics
with the tools of scattering theory. Jimbo, Miwa, Môri, and Sato [17] related det(1 − Ks) to a
Painlevé equation. Widom [34] obtained the leading asymptotics using the Krein continuous analog
of orthogonal polynomials. Deift, Its, and Zhou [11] justified the Dyson asymptotic expansions
using tools developed for Riemann-Hilbert problems. Tracy and Widom [32] established partial
differential equations for the Fredholm determinants of integral operators arising in the study of
the scaling limit of the distribution functions of eigenvalues of random matrices. We refer the reader
to the cited references and to [12] for recent results and we apologize for not providing any more
detailed information here.

We have, in the present paper, been talking a lot of scattering and determinants and one might
wonder if this is not a re-wording of known things. In fact, our work is with the multiplicative
kernels k(xy), and (direct) reduction to additive kernels would lead to (somewhat strange) g(t+u)
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kernels on semi-infinite intervals (−∞, log(a)]. So we are indeed doing something different; one may
also point out that the entire functions arising in the present study are not of finite exponential
type; and the scattering matrices do not at all tend to 1 as the frequency goes to infinity. In the
case of the cosine and sine kernels the flow of information will presumably go from the additive to
the multiplicative, as the additive situation is more flexible, and has stimulated the development of
powerful tools, with relation to Painlevé equations, Riemann-Hilbert problems, Integrable systems
[11].

Nevertheless, one may ask if the framework of reproducing kernels in Hilbert spaces of entire
functions also may be used in the additive situation. This is the case indeed and it is very much
connected to the method of Krein in inverse scattering theory, and his continuous analog of or-
thogonal polynomials (used by Widom in the context of the Dirichlet kernel in [34].) The Gaudin
identities for convolution kernels ([22, App. A16]) play a rôle very analogous to the identities in the
present paper (132a), (132b) involved in the study of multiplicative kernels. Widom in his proof [34]
of the main term of the asymptotics as s → +∞ studied the Krein functions associated with the
complement of the interval (−1,+1) and he mentioned the interest of extremal properties. In this
appendix, I shall point out that the resolvent of the Dirichlet kernel indeed does have an extremal
property: it coincides exactly (up to complex conjugation in one variable) with the reproducing
kernel of a certain (interesting) Hilbert space of entire functions. This could be a new observation,
obviously closely related to the method of Widom [34].

The space mPWs we shall use is, as a set, the Paley-Wiener space PWs, but the norm is
different:

mPWs = {f(z) entire of exponential type at most s with ‖f‖ <∞}

‖f‖2 =

∫

R\(−1,1)
|f(t)|2 dt (273)

Let Xs(z, w) be the element of mPWs which is the evaluator at z: ∀f ∈ mPWs (f,Xs(z, ·)) = f(z).
We shall compare Xs(z, w) with the resolvent of the kernel

Ds(x, y) =
sin(s(x− y))

π(x− y)
(274)

on L2(−1, 1; dx).
Let f ∈ mPWs. It belongs to PWs so

f(z) =

∫

R
f(t)

eis(t−z) − e−is(t−z)
2πi(t− z) dt =

∫

R
f(t)

sin(s(t− z))
π(t− z) dt (275)

On the other hand:

f(z) =

(∫ −1

−∞
+

∫ ∞

1

)
f(t)Xs(z, t) dt (276)

As f(z) =
(∫ −1
−∞+

∫∞
1

)
f(t) Xs(z, t) dt =

(∫ −1
−∞+

∫∞
1

)
f(t)Xs(z, t) dt one has Xs(z, t) = Xs(z, t)

for t ∈ R. We have for y1 and y2 real

Xs(y1, y2) =

∫

R\(−1,1)
Xs(y1, t)Xs(y2, t) dt =

∫

R\(−1,1)
Xs(y1, t)Xs(y2, t) dt = Xs(y2, y1) (277)

so more generally Xs(z1, z2) = Xs(z2, z1).
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We apply (276) to f(z) = sin(s(z−y))
π(z−y) for some y ∈ C:

sin(s(z − y))

π(z − y)
=

∫

R\(−1,1)

sin(s(t− y))

π(t− y)
Xs(z, t) dt (278)

We apply (275) to f(y) = Xs(z, y) for some z ∈ C:

Xs(z, y) =

∫

R
Xs(z, t)

sin(s(t− y))

π(t− y)
dt (279)

Combining we obtain:

Xs(z, y)− sin(s(z − y))

π(z − y)
=

∫ 1

−1
Xs(z, t)

sin(s(t− y))

π(t− y)
dt (280)

Restricting to y ∈ (−1, 1), z = x ∈ (−1, 1), this says exactly:

Xs(x, y) = Rs(x, y) (281)

where Rs(x, y) is the kernel of the resolvent: 1 +Rs = (1−Ds)
−1, Rs−Ds = RsDs. The resolvent

Rs(x, y) is entire in (x, y) and the general formula is thus:

∀z, w ∈ C Rs(z, w) = Xs(z, w) . (282)
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[6] J.-F. Burnol, Des équations de Dirac et de Schrödinger pour la transformation de Fourier, C.
R. Acad. Sci. Paris, Ser. I 336 (2003), 919–924.

[7] J.-F. Burnol, Two complete and minimal systems associated with the zeros of the Riemann
zeta function, Jour. Th. Nb. Bord. 16 (2004).

[8] J.-F. Burnol, Entrelacement de co-Poisson, Ann. Inst. Fourier, 57 no. 2 (2007), 525–602.

[9] J.-F. Burnol, Spacetime causality in the study of the Hankel transform, Ann. Henri Poincaré
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[17] M. Jimbo, T. Miwa, Y. Môri, M. Sato, Density matrix of an impenetrable Bose gas and the
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