
An open letter concerning

Alexander duality for monomial ideals and
their resolutions

Dear Reader,

This article was submitted to Journal of Pure and Applied Algebra on December 15, 1998,
and it was rejected with a very short report about eight months later, the cited reason being
that it was too long for its content. By the time I received that overdue rejection, I was
nearly done writing a sequel,

Ezra Miller, The Alexander duality functors and local duality with monomial support,
Journal of Algebra 231 (2000), 180–234.

which contained more general results. The sequel has been well-cited, but the current article
was already on the arXiv (math.AC/9812095), and according to Google Scholar it has also
been well-cited. In fact, this article has been cited more than most of my others—as much
or more, for example, than my articles in Journal of the American Mathematical Society
and Duke Mathematical Journal. It seemed a shame that what is apparently a useful article
should languish in eternal semipublication, so I submitted it to Rejecta Mathematica.

Why is this article useful? It is more concrete than its sequel: more examples, more illus-
trations, and fewer functors. The article contains no known errors and no known uncited
rederivations of earlier work; in fact, subsequent work (by other authors as well as in its
sequel) has confirmed the results herein by independent methods many times over. The
article is unchanged from the version submitted to Journal of Pure and Applied Algebra.

Ezra Miller
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Alexander Duality for Monomial Ideals and Their Resolutions

Ezra Miller

Abstract

Alexander duality has, in the past, made its way into commutative algebra through Stanley-
Reisner rings of simplicial complexes. This has the disadvantage that one is limited to square-
free monomial ideals. The notion of Alexander duality is generalized here to arbitrary mono-
mial ideals. It is shown how this duality is naturally expressed by Bass numbers, in their
relations to the Betti numbers of a monomial ideal and its Alexander dual. The effect of
Alexander duality on free resolutions is studied in the context of cellular resolutions. Relative
cohomological constructions on cellular complexes are shown to relate cellular free resolutions
of a monomial ideal to free resolutions of its Alexander dual ideal.

Introduction

Alexander duality in its most basic form is a relation between the homology of a simplicial

complex Γ and the cohomology of another simplicial complex Γ∨, called the dual of Γ. Recently

there has been much interest in the consequences of this relation when applied to the monomial

ideals which are the Stanley-Reisner ideals IΓ and IΓ∨ for the given simplicial complex and its

Alexander dual. This has the limitation that Stanley-Reisner ideals are always squarefree. The first

aim of this paper is to define Alexander duality for arbitrary monomial ideals and then generalize

some of the relations between IΓ and IΓ∨ . A second goal is to demonstrate that Bass numbers are

the proper vessels for the translation of Alexander duality into commutative algebra. The final goal

is to reveal the connections between Alexander duality and the recent work on cellular resolutions.

There are two “minimal” ways of describing an arbitrary monomial ideal: via the minimal

generators or via the (unique) irredundant irreducible decomposition. Given a monomial ideal

I, Definition 1.5 describes a method for producing another monomial ideal I∨ whose minimal

generators correspond to the irredundant irreducible components of I. Miraculously, this is enough

to guarantee that the minimal generators of I correspond to the irreducible components of I∨. It is

particularly easy to verify that this reversal of roles takes place for the squarefree ideals I = IΓ and

I∨ = IΓ∨ above (Proposition 1.10). A connection with linkage and canonical modules is described

in Theorem 2.1.

One can also deal with Alexander duality as a combinatorial phenomenon, thinking of Γ as an

order ideal in the lattice of subsets of {1, . . . , n}. The Alexander dual Γ∨ is then given by the

complement of the order ideal, which gives an order ideal in the opposite lattice. For squarefree

monomial ideals all is well since the only monomials we care about are represented precisely by the

lattice of subsets of {1, . . . , n}. For general monomial ideals we instead consider the larger lattice

Zn, by which we mean the poset with its natural partial order �. Then a monomial ideal I can be

regarded as a dual order ideal in Zn, and I∨ is constructed (roughly) from the complementary set

of lattice points, which is an order ideal—see Definition 2.9. It is Theorem 2.13 which proves the

equivalence of the two definitions.
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Bass numbers first assert themselves in Section 3. Their relations to Betti numbers for monomial

modules (Corollary 3.6 and Theorem 3.12) are derived as consequences of graded local duality and

Alexander duality (in its avatar as lattice duality in Zn). The Bass-Betti relations are then massaged

to equate the localized Bass numbers of I (Definition 4.8) with the Betti numbers of I∨ in the first

of the two central results of this paper, Theorem 4.10. Theorem 2.13 is then recovered as a special

case of this main result, which also finds an application to inequalities between the Betti numbers

of dual ideals (Theorem 4.13) generalizing those for squarefree ideals in [2].

The extension of Alexander duality to resolutions is accomplished in Sections 5 and 6. A new

canonical and geometric resolution, the cohull resolution is constructed in Definition 5.15. It should

be thought of as Alexander dual to the hull resolution of [4] (which is similarly canonical and

geometric). Roughly speaking, the cohull resolution is constructed from the irreducible components

instead of the minimal generators. The cohull resolution owes its existence to the second central

result of the paper, Theorem 5.8, which is a more general result on duality for cellular resolutions.

Its proof, which is resolutely algebraic, is the content of Section 6. The idea is to deform an ideal

into its dual step by step via Definition 6.1 and keep track of the deformations on cellular resolutions

(Theorem 6.9). The final step, taken in Theorem 6.11, is to check the effect of the deformations on

the homology of the resolutions.

Acknowledgements. The author would like to express his thanks to Dave Bayer, David Eisenbud,

Serkan Hosten, Sorin Popescu, Stefan Schmidt, Frank Sottile, Bernd Sturmfels, and Kohji Yanagawa

for their helpful comments and discussions.

1 Definitions and basic properties

For notation, let S be the Zn-graded k-algebra k[x1, . . . , xn] ⊆ T := S[x−1
1 , . . . , x−1

n ], where k is a

field and n ≥ 2. If A ⊆ T is any subset, 〈a | a ∈ A〉 will denote the S-submodule generated by

the elements in A, and it may also be regarded as an ideal if A ⊆ S. The maximal Zn-graded ideal

〈x1, . . . , xn〉 of S will be denoted by m. Each (Laurent) monomial in T is specified uniquely by a

single vector a = (a1, . . . , an) =
∑

i aiei ∈ Zn, while each irreducible monomial ideal is specified

uniquely by a vector b = (b1, . . . , bn) ∈ Nn, so the notation

xa = xa1
1 · · ·xan

n and mb = 〈xbii | bi ≥ 1〉
will be used to highlight the similarity. The Zn-graded prime ideals, which are precisely the mono-

mial prime ideals, are indexed by faces of the (n − 1)-simplex ∆ := 2{1,...,n} with vertices 1, . . . , n.

Identifying a face F ∈ ∆ with its characteristic vector in Zn, the monomial prime corresponding

to F may be written with the above notation as mF . Note, in particular, that mb need not be an

artinian ideal, just as xa need not have full support. In fact, mb is m
√

b-primary, where
√

b ∈ ∆ is

the face representing the support of b; that is,
√

b has i th coordinate 1 if bi ≥ 1 and 0 otherwise.

With this notation, taking radicals can be expressed as
√

mb = m
√

b.
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All modules N and homomorphisms of such will be Zn-graded, so that N =
⊕

a∈Zn Na. In

addition, any module that is isomorphic to a submodule of T as a Zn-graded module will, if it is

convenient, be freely identified with that submodule of T . For instance, the principal ideal generated

by x1 · · ·xn can be identified with the module S[−1], where 1 = (1, . . . , 1) ∈ Zn and N [a]b = Na+b

for a,b ∈ Zn. In this paper, ideals will all be proper monomial ideals, and the symbol I will always

denote such an ideal. The vector aI will denote the exponent on the least common multiple of the

minimal generators of I.

Before making the definition of Alexander dual ideal, the next few results make sure that the

exponents used to define the set Irr(I) of irredundant irreducible components of I are � aI . For

the next two results, let Λ denote the set of irreducible ideals containing I.

Lemma 1.1 If mb ∈ Irr(I) then mb is minimal (under inclusion) in Λ.

Proof: Suppose mb 6= mc and that mb ⊇ mc ∈ Λ. If now I = mb ∩ I ′ for some ideal I ′ then also

I = mc ∩ I ′, whence mb 6∈ Irr(I). 2

Proposition 1.2 If mb ∈ Irr(I) then for each i ∈ √b there is a minimal generator xc of I with

bi = ci.

Proof: Suppose mb ∈ Irr(I) but the conclusion does not hold. Then given any minimal generator

xc of I, either bi′ ≤ ci′ for some i 6= i′ ∈ √b, or else bi < ci. In either case, xc ∈ mb+ei , where ei is

the i th unit vector in Zn. Then mb+ei ⊇ I, contradicting the minimality of mb in Λ. 2

Corollary 1.3 For any mb ∈ Irr(I) we have b � aI . 2

The following notation will be very convenient in the definition and handling of Alexander

duality. For any vector a ∈ Zn and any face F ∈ ∆, let a · F denote the restriction of a to F :

(a · F )i =

{
ai if i ∈ F
0 otherwise

.

This operation may also be thought of as the coordinatewise product of a and F . If, in addition,

0 � b � a, define ba to be the vector whose i th coordinate is ai + 1− bi if bi ≥ 1 and 0 otherwise;

more compactly,

ba = (a + 1− b) ·
√

b = (a + 1) ·
√

b− b ,

where
√

b is the support of b, as above. The next result is a first indication of the utility of ba

when applied to irreducible ideals mb.

Proposition 1.4 If 0 � b, c � a then mb ⊇ mc if and only if ba � ca.
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Proof: The condition mb ⊇ mc is equivalent to the combination of (i)
√

b � √c and (ii) b ·√c � c.

Now consider the inequalities in the following chain:

ba = (a + 1− b) ·
√

b � (a + 1− b) · √c � (a + 1− c) · √c = ca .

The left inequality is equivalent to (i) since a + 1− b has full support, and the right inequality is

equivalent to (ii) since c · √c = c. It remains only to show that ba � ca implies both inequalities,

and this can be checked coordinatewise. If ci = 0, then both inequalities become trivial; if ci > 0

then bi > 0, and the left inequality becomes an equality while the right inequality becomes (ba)i =

ai + 1− bi ≥ ai + 1− ci = (ca)i . 2

Corollary 1.3 clears the way for the main definition of this paper:

Definition 1.5 (Alexander duality) Given an ideal I and a � aI , the Alexander dual ideal Ia

with respect to a is defined by

Ia = 〈xba | mb ∈ Irr(I)〉.
For the special case when a = aI , let I∨ = IaI .

Remark 1.6 (i) We will never have occasion to take an Alexander dual of the ideal m, so ma will

retain its original definition.

(ii) The dual Ia with respect to any a � aI depends only on a · √aI . This is because b and a · √b

determine ba, and a · √b = (a · √aI) ·
√

b for all of the relevant b by Corollary 1.3. In particular,

I∨ = I1 if I is squarefree.

(iii) I∨ is not gotten by taking the depolarization of the Alexander dual of the polarization of

I (see [14], Chapter II for polarization). For instance, when I = 〈x2, xy, y2〉, the polarization is

Ipolar = 〈x1x2, x1y1, y1y2〉, whose canonical Alexander dual is I∨polar = 〈x1y1, x1y2, x2y1〉. Removing

the subscripts on x and y then yields the principal ideal 〈xy〉, whereas I∨ = 〈xy2, x2y〉.

Proposition 1.7 The set of generators for Ia given by the definition is minimal. More generally,

suppose a � aI and Λ is a collection of integer vectors � a such that I =
⋂

b∈Λ mb. Then

Ia = 〈xba | b ∈ Λ〉, and the intersection determined by Λ is irredundant if and only if the set of

generators for Ia is minimal.

Proof: This follows from Corollary 1.3 and Proposition 1.4. 2

Example 1.8 Let n = 3, so that S = k[x, y, z]. Figure 1 lists the minimal generators and irredun-

dant irreducible components of an ideal I ⊆ S and its dual I∨ with respect to aI . The (truncated)

“staircase diagrams” representing the monomials not in these ideals are also rendered in Figure 1.

In fact, the staircase diagram for I∨ is gotten by literally turning the staircase diagram for I upside-

down (the reader is encouraged to try this). Notice that the support of a minimal generator of I is

equal to the support of the corresponding irreducible component of I∨. 2
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012

031

301

202
111

005

024

043

350

430

125
215

144

103

451 001

023

042

205

115
035

054

351
441

422

403

455
304

210
130

I I∨

I = 〈z5, x2z2, x4y3, x3y5, y4z3, y2z4, xyz〉
= 〈x2, y, z5〉 ∩ 〈y, z2〉 ∩ 〈y3, z〉 ∩ 〈x4, y5, z〉 ∩ 〈x3, z〉 ∩ 〈x, z3〉 ∩ 〈x, y4, z4〉 ∩ 〈x, y2, z5〉

a := aI = (4, 5, 5)

I∨ = 〈z〉 ∩ 〈x3, z4〉 ∩ 〈x, y3〉 ∩ 〈x2, y〉 ∩ 〈y2, z3〉 ∩ 〈y4, z2〉 ∩ 〈x4, y5, z5〉
= 〈x3y5z, y5z4, y3z5, xyz5, x2z5, x4z3, x4y2z2, x4y4z〉.

Figure 1: The truncated staircase diagrams, minimal generators, and irredundant irreducible com-
ponents for I and I∨. Black lattice points are generators, and white lattice points indicate irreducible
components. The numbers are to be interpreted as vectors, e.g. 205 = (2,0,5). The arrows attached
to a white lattice point indicate the directions in which the component continues to infinity; it
should be noted that a white point has a zero in some coordinate precisely when it has an arrow
pointing in the corresponding direction.

Example 1.9 Let Σn denote the symmetric group on {1, . . . , n} and c = (1, 2, . . . , n) ∈ Nn. The

ideal I = 〈xσ(c) | σ ∈ Σn〉 is the permutahedron ideal determined by c, introduced in [4], Example 1.9.

The results of Example 5.22 below imply that the canonical Alexander dual is the forest ideal, which

is generated by 2n − 1 monomials: I∨ = 〈(xF )n−|F |+1 | ∅ 6= F ∈ ∆〉. For instance, when n = 3,

I = 〈xy2z3, xy3z2, x2yz3, x2y3z, x3yz2, x3y2z〉
I∨ = 〈xyz, x2y2, x2z2, y2z2, x3, y3, z3〉.

The quotient of S by the forest ideal has the same dimension (over k) as the algebra An generated

by the Chern 2-forms of the tautological line bundles over a flag manifold (see [10] and [13]). More

precisely, the standard monomials of I∨, which are known to be in bijection with the forests on

n labelled vertices, are shown in [10] to be a k-basis of An. The minimal free resolution of I∨ is

obtained in Example 5.22, below. 2
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Recall that for a simplicial complex Γ ⊆ ∆ the Stanley-Reisner ideal IΓ of Γ is defined by the

nonfaces of Γ:

IΓ = 〈xF | F 6∈ Γ〉,
and the Alexander dual simplicial complex Γ∨ consists of the complements of the nonfaces of Γ:

Γ∨ = {F ∈ ∆ | F 6∈ Γ},
where F = {1, . . . , n} \ F . Recall also that IΓ may be equivalently described as

IΓ =
⋂
F∈Γ

mF ,

since mF ⊇ I ⇔ F has at least one vertex in each nonface of Γ ⇔ F is missing at least one vertex

from each nonface of Γ ⇔ F is a face of Γ. Applying Definition 1.5 to the latter characterization

of IΓ yields:

Proposition 1.10 For a simplicial complex Γ ⊆ ∆ we have I∨Γ = IΓ∨.

Proof: Observe that b1 = b if b ∈ {0, 1}n, and use Proposition 1.7 along with Remark 1.6(ii). We

get I∨Γ = 〈xF | F ∈ Γ〉 = 〈xF | F 6∈ Γ∨〉 = IΓ∨ . 2

Thus, as promised, Definition 1.5 generalizes to arbitrary monomial ideals the definition of

Alexander duality for squarefree monomial ideals. The connection with the squarefree case is never

lost, however, because the general definition does the same thing to the zero-set of I as the squarefree

definition does:

Proposition 1.11 Taking Alexander duals commutes with taking radicals:
√
I∨ =

√
I
∨

.

Proof: Since 0 � b � aI whenever mb ∈ Irr(I), the equality
√

b =
√

baI follows from the

definitions. Thus,

√
I∨ = 〈x

√
b | mb ∈ Irr(I)〉

= 〈xF | mF is minimal among primes containing I〉
=
√
I
∨
,

the last equality using again the facts mentioned in the first line of the proof of Proposition 1.10.

2

The notion of Alexander duality sheds light on the interconnections between some of the de-

velopments in [3], [4], and [15] concerning cellular resolutions and (co)generic monomial ideals. To

begin with, consider the following condition on a set of vectors {bj = (bj1, . . . , b
j
n) ∈ Nn}rj=1:

bji ≥ 1 ⇒ bji 6= bj
′
i for all j′ 6= j.
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A generic ideal, as defined in [3], is an ideal whose minimal generators have exponent vectors

satisfying the above condition; similarly, a cogeneric ideal, as defined in [15], is an ideal whose

irredundant irreducible components have exponent vectors satisfying the above condition. Using

Definition 1.5 the following is immediate (for any a � aI).

Proposition 1.12 Ia is generic if and only if I is cogeneric. 2

Example 1.13 The ideal I in Example 1.8 is generic, while I∨ is cogeneric. 2

The connections between the minimal resolutions of such ideals and cellular resolutions will be

explored in Section 5.

Recall that the Castelnuovo-Mumford regularity and initial degree of a Z-graded S-module L

defined respectively by

reg(L) := max{j ∈ Z | Tori(L, k)i+j 6= 0} and indeg(L) := min{j ∈ Z | Lj 6= 0},

where Lj is the jth component of L. The question was raised in [8], Question 10 whether there is a

duality for possibly nonradical monomial ideals with the “amazing properties”

• reg(I)− indeg(I) = dim(S/I∨)− depth(S/I∨)
• I is componentwise linear if and only if S/I∨ is sequentially Cohen-Macaulay

obeyed by Alexander duals in the squarefree case. Here, I is considered in its Z-grading. Having

defined a duality operation in this paper, some comments are obviously warranted.

First of all, it is unrealistic to expect the first property to extend to the arbitrary (nonradical)

case since the right-hand side of the equation is bounded while the left-hand side is not, in general.

For instance, if d ∈ N then reg(md·1) − indeg(md·1) = n(d − 1) − d while (md·1)∨ = 〈x1 · · ·xn〉 is

Cohen-Macaulay. Nevertheless, there may be some class of ideals which behaves nicely under some

kind of duality, not necessarily as defined here. As to whether or not such a class of ideals exists

for the Alexander duality as defined here, such an investigation has not yet been made.

Unfortunately, the second property also fails for I and Ia, for somewhat trivial reasons: almost

every ideal has an artinian Alexander dual. Specifically, if I is arbitrary and x = x1 · · ·xn, then

S/(xI)a is artinian (for any a � aI), and hence Cohen-Macaulay. But the minimal free resolution

of xI is just the shift by 1 of the minimal resolution of I. Thus every minimal resolution, be it

componentwise linear or not, appears as the resolution of an ideal whose dual is a Cohen-Macaulay

ideal; i.e. S/Ia Cohen-Macaualy 6⇒ I componentwise linear.

One might still hope that the implication “I has a linear resolution ⇒ S/Ia is sequentially

Cohen-Macaulay” would hold, but even this fails, as the example below shows. The fundamental

problem with the nonsquarefree case is that the Z-degree of an element is not determined by the

support of its Zn-graded degree, as it is with squarefree monomials. Thus an ideal might have
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a linear resolution while its generators have support sets of varying sizes, wreaking havoc with

the equidimensionality required for the Cohen-Macaulayness of the dual. Even so, it would be

very interesting to know what is the property Alexander dual to “sequentially Cohen-Macaulay”;

perhaps this property could relax the requirements of componentwise linearity in a nice way.

Example 1.14 Let I ′ = 〈ab, bc, cd〉 ⊆ S = k[a, b, c, d] be the ideal of the “stick twisted cubic”

simplicial complex spanned by the edges {b, d}, {b, c}, and {a, c}. It is readily checked that I ′ has a

linear resolution: indeed, (I ′)∨ is the ideal of another stick twisted cubic, which is Cohen-Macaulay

because the stick twisted cubic is connected and has dimension 1, so [6], Theorem 3 applies. Let

I = mI ′ = 〈a2b, abc, acd, ab2, b2c, bcd, abc, bc2, c2d, abd, bcd, cd2〉
I∨ = 〈b2d2, b2c2, a2c2, abc2d2, a2bcd2, a2b2cd〉

with aI = (2, 2, 2, 2). Then I has a linear resolution by [8], Lemma 1, and we show that S/I∨ is not

sequentially Cohen-Macaulay.

Recall that for a module N to be sequentially Cohen-Macaulay, we require that there ex-

ist a filtration 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nr = N such that Ni/Ni−1 is Cohen-Macaulay for all

i ≤ r and dim(Ni+1/Ni) > dim(Ni/Ni−1) for all i < r. It follows from the equidimensionality

of N/Nr−1 and the strict reduction of dimension in successive quotients that Nr−1 is the top di-

mensional piece of N ; i.e. Nr−1 is the intersection of all primary components (of 0 in N) which

have dimension dim(N). Thus it suffices to check that S/I∨top is not Cohen-Macaulay, where

I∨top = 〈b2d2, b2cd, abcd, b2c2, abc2, a2c2〉 is the intersection of all primary components of I∨ which

have dimension 2 = dim(S/I∨). 2

2 Alternate characterizations of the Alexander dual ideal

Definition 1.5 is quite satisfactory for the consequences just derived from it, but it can sometimes

be inconvenient to work with. For instance, it is not obvious from the definition that (Ia)a = I,

which is fundamental—see Corollary 2.14. For this and other applications, we set out now to

find other characterizations of the Alexander dual ideal in Theorem 2.1 and in Definition 2.9 with

Theorem 2.13. Along the way, an algebraic analogue of combinatorial lattice duality in Zn is defined

in Defintion 2.3.

First, a result relating Alexander duality to linkage (see [17], Appendix A.9 for a brief introduc-

tion to linkage, and references):

Theorem 2.1 If a � aI then (ma+1 : Ia) = I + ma+1.

Proof: Let Min(Ia) denote the exponents on the minimal generators of Ia. Then (ma+1 : Ia) =⋂
b∈Min (Ia)(m

a+1 : xb). But xc · xb ∈ ma+1 ⇔ b + c 6� a ⇔ c 6� a− b ⇔ xc ∈ ma+1−b. Thus,
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taking all intersections over b ∈ Min(Ia),⋂
(ma+1 : xb) =

⋂
ma+1−b =

⋂(
mba

+ ma+1
)

=
(⋂

mba
)

+ ma+1 = I + ma+1

since (ba)a = b for all b � a. 2

Remark 2.2 Using Corollary 2.14, below, this theorem provides a useful way to compute the

Alexander dual ideal, given a set of generators. Indeed, the generators for Ia are simply those

generators of (ma+1 : I) whose exponents are � a. Using Definition 1.5 (and Corollary 2.14 again),

this can also be construed as a method for computing irreducible components of I given a generating

set for I, or vice versa.

Denoting the Zn-graded Hom functor by Hom, the next duality that comes into play is the k-dual

N∧ := Homk(N, k), which is a Zn-graded S-module with the grading (N∧)c = Hom k(N−c, k). It is

a simple but very important observation that T∧ ∼= T as Zn-graded modules. This can be exploited:

let M ⊆ T be a submodule (the Zn-graded submodules of T are precisely the monomial modules of

[4]). Taking the k-dual of the surjection T → T/M yields an injection (T/M)∧ → T∧ ∼= T . This

makes (T/M)∧ into a submodule of T which we call the T -dual of M and denote by MT . If one

thinks of the module M as a set of lattice points in Zn, then MT can be thought of as the negatives

of the lattice points in the complement of M ; i.e. we can make the equivalent

Definition 2.3 The T -dual MT of a monomial module M ⊆ T is defined by x−b ∈MT ⇔ xb 6∈M .

The equivalence with the earlier formulation can be seen simply by examining which Zn-graded

pieces of M and MT have dimension 1 over k and which have dimension 0. Observe the striking

similarity of Definition 2.3 with definition of the dual simplicial complex: F ∈ Γ∨ ⇔ F 6∈ Γ. Here

are some properties of the T -dual which will be used later (possibly without explicit reference).

Note the similarity of (i)–(iii) to the laws governing complements, unions, and intersections.

Proposition 2.4 Let M and N be submodules of T . Then

(i) (MT )T = M (v) T/MT = M∧

(ii) M ⊆ N ⇔ NT ⊆MT (vi) (N/M)∧ = MT/NT if M ⊆ N
(iii) (M +N)T = MT ∩NT (vii) (N/N∩M)∧ = MT/MT∩NT

(iv) M [a]T = MT [−a]

Proof: Statements (i)–(iv) follow from Definition 2.3, and (v) follows either from the definition

and (i) or as a special case of (vi). To prove (vi) observe that N/M = ker(T/M → T/N) so that

(N/M)∧ = coker((T/N)∧ → (T/M)∧) and use the definition of T -dual. Finally, (vii) is just (vi)

and (iii) applied to (N +M)/M = N/N∩M . 2
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Definition 2.5 Given a monomial ideal I ⊆ S define the Čech hull of I in T :

Ĩ := 〈xb | b ∈ Zn and xb+∈ I〉 ,

where b+ ∈ Nn is, as usual, the join (componentwise maximum) of b and 0 in the order lattice Zn.

Proposition 2.6 Taking the Čech hull commutes with finite intersections and sums. Furthermore,

(i) Ĩ is the largest monomial submodule of T whose intersection with S is equal to I.

(ii) Ĩ can be generated by (possibly infinitely many) monomials in T of degree � aI .

(iii) Ĩ T is generated in degrees � 0.

Proof: The first statement follows from (i) and the definitions.

(i) It is clear from the definition that Ĩ contains I; and if xb ∈ Ĩ ∩ S then b+ = b whence xb ∈ I.

Thus Ĩ ∩ S = I. On the other hand, if M is a monomial submodule of T satisfying M ∩ S = I and

xb ∈M , then xb−· xb = xb+ ∈M ∩ S = I, where b− := b+ − b. Thus M ⊆ Ĩ.

(ii) If xb ∈ Ĩ then c � b+ for some minimal generator xc of I, whence xc−b− is in Ĩ, divides xb,

and has exponent � aI .

(iii) The following statement is precisely the T -dual to statement (i): Ĩ T is the smallest submodule

whose sum with m̃ is equal to I T. As m̃ already contains all degrees 6� 0, minimality of Ĩ T implies

that it is generated in degrees � 0. 2

Example 2.7 (i) Recall that for F ∈ ∆, the complement {1, . . . , n} \ F is denoted by F . Using

this, the localization S[x−F ] is achieved by inverting the variables xi for i 6∈ F . Now let b � 0 and

F =
√

b. Then (
m̃b
)T

=
(
S[x−F ]

)
[b− F ] .

To see this, first observe that if c ∈ Nn then xc 6∈ mb ⇔ c · F � b− F . Therefore, if c ∈ Zn then

xc 6∈ m̃b ⇔ c+ � b− F ⇔ c · F � b− F . This last condition is equivalent to −c · F � F − b,

and this occurs if and only if x−c ∈
(
S[x−F ]

)
[b− F ].

(ii) For a special case, it follows that when b � 0, m̃b+1 = S[b]T . 2

Remark 2.8 Example 2.7(ii) is the reason for the name Čech hull: when b = 0, we find that m̃ is

the kernel of the last map in the Čech complex on x1, . . . , xn.

Definition 2.9 For any monomial ideal I and a � aI , define

I [a] := Ĩ T [−a] ∩ S.
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Ia-

I T

aI

I

aI

I

Ia- Ia+ = 0

I T
Ia-[ ]aII [ ]

0

Figure 2

Example 2.10 Figure 2 is a schematic diagram depicting the transformation in stages from I to

I [aI ]. The black and white dots shift by 1 from the penultimate stage to the last; they are left in place

(with respect to the dark black dot and the dark dotted lines) for the rest of the transformation.

This shift is the reason for the 1 in the definition of ba, and it occurs because the flip-flop from Ĩ

to Ĩ T leaves a space of 1. The crux of this whole theory is that the “boundaries” of Ĩ and Ĩ T have

the same shape, but reversed, thus switching the roles of the black and white dots. This schematic

may be helpful in parsing the proof of Theorem 2.13, below. 2

Lemma 2.11 (I [a])̃ = Ĩ T [−a].

Proof: Let M = Ĩ T [−a]. By Proposition 2.6(i), (M ∩ S )̃ ⊇ M since their intersections with S

are equal by definition. Thus ((M ∩ S )̃ )T ⊆ MT , with equality in degrees � 0. But MT = Ĩ[a]

is generated in negative degrees by Proposition 2.6(ii), so that in fact ((M ∩ S )̃ )T = MT . Taking

T -duals of this equality gives the desired result. 2

The upshot is that I may be reconstructed from I [a] via the same construction which produces I [a]

from I:
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Proposition 2.12 aI[a] � a and I = (I [a])[a].

Proof: By Proposition 2.6(iii) Ĩ T [−a] is generated in degrees � a, so Lemma 2.11 implies that

the same holds for (I [a])̃ . It is trivial to check that if any monomial module M ⊆ T is generated

in degrees � a then so is M ∩ S, because a � 0. Thus aI[a] � a, and, in particular, (I [a])[a] is

well-defined. Now

(I [a])[a] = ((I [a])̃ )T [−a] ∩ S by definition

= (Ĩ T [−a])T [−a] ∩ S by the previous lemma

= Ĩ ∩ S by Proposition 2.4(iv) and (i)
= I. 2

The real cause for introducing I [a] is the next result, which may not be so unexpected at

this point. It would seem that Theorem 2.13 makes the notation I [a] superfluous, and it does;

nevertheless, the notation will be retained for emphasis, to indicate that Sections 3 and 4 (and, in

particular, Theorem 4.10) are logically independent from Theorem 2.13.

Theorem 2.13 Ia = I [a].

Proof: To simplify notation, declare that b ∈ Irr(I) if mb ∈ Irr(I). For each b ∈ Irr(I), let

Sb = S[x–
√

b ] be the localization of S at the prime m
√

b. Then for each b ∈ Irr(I) and any c ∈ Nn

we have the following two facts:

(i) Sb[−c] ∼= Sb[−c · √b ] since multiplication by xc·√b is a Zn-graded automorphism of Sb[−c].

(ii) S ∩Sb[−c ·√b ] = S[−c ·√b ]. Indeed, this is equivalent to
(
〈xc·√b 〉 ·Sb

)
∩S = 〈xc·√b 〉, which

holds because 〈xc·√b 〉 ⊆ S is saturated with respect to 〈x
√

b 〉; i.e.
(
〈xc·√b 〉 : x

√
b
)

= 〈xc·√b 〉.
Creating I [a] from I in stages yields

Ĩ =
⋂

m̃b by Proposition 2.6

⇒ Ĩ T =
∑(

m̃b
)T

by Proposition 2.4(iii)

=
∑

Sb[b−
√

b] by Example 2.7(i)

⇒ Ĩ T [−a] =
∑

Sb[−ba] by (i) above, with c = a +
√

b− b

⇒ S ∩ Ĩ T [−a] =
∑

S[−ba] by (ii) above, with c = ba

where the intersection and all of the summations are taken over all b ∈ Irr(I). The last summation

above is equal to Ia since each summand S[−ba] is just a principal ideal 〈xba〉. 2

Corollary 2.14 (Ia)a = I. Furthermore, (ba)a = b, so that

Ia =
⋂
{mba | xb is a minimal generator of I} . 2
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Remark 2.15 In general, one has (I∨)∨ 6= I. However, in the special case when I =
√
I, it will

always happen that (I∨)∨ = I. This follows from an application of Corollary 2.14 to Remark 1.6(ii).

The difference aI − aI∨ measures the extent to which (I∨)∨ 6= I fails, in the sense that (I∨)∨ =

I[aI − aI∨ ] ∩ S. However ((I∨)∨)∨ = I∨, so that an ideal which is already an Alexander dual is

maximal in some sense. It is unclear what the invariant aI − aI∨ means, in general, although the

passage from I to (I∨)∨ can sometimes be thought of as a “tightening” that may resolve some

amount of nonminimality in the hull resolution of [4]—see Example 5.27. See also Remark 5.9(ii)

below for another occurrence of the invariant aI − aI∨ .

The reader interested in cellular resolutions may wish to skip directly to Section 5, whose only

logical dependence on Sections 3 and 4 is Proposition 3.11.

3 Bass numbers versus Betti numbers

Algebraically, Alexander duality is best expressed in terms of relations between Betti and Bass

numbers (Definition 3.1), as evidenced by this section and the next. The principle behind this

is that the T -duality of Section 2, which can be thought of as lattice duality in Zn, can also

be interpreted (Corollary 3.6) as a manifestation of the same process that interchanges flat and

injective modules (in the appropriate category). In Theorem 3.12 this results in equalities between

Bass and Betti numbers of I. Though perhaps not so interesting a statement in its own right,

Proposition 3.11 is the workhorse for the remainder of the paper—it is the reason everything else

is true. It encapsulates simultaneously the relations between all of the dualities that enter into this

paper: k- and T -duality, Alexander duality, linkage, local duality, and Matlis duality.

Definition 3.1 The derived functors of the Zn-graded functor Hom will be called Ext , and the left

derived functor of ⊗, which is also Zn-graded, will be called Tor . For a module N define

µi,b(N) = dimk

(
Ext iS(k,N)b

)
βi,b(N) = dimk

(
Tor Si (k,N)b

)
,

the i th Bass and Betti numbers of N in degree b.

Remark 3.2 (i) In order to compute these derived functors in the category M of Zn-graded S-

modules (see Proposition 3.3), we need to know thatM has enough injective and projective modules,

just as in the nongraded case. Of course, there are always free modules, so this takes care of the

projectives; for injectives one can easily modify the proof of [5], Theorem 3.6.2 to fit the Zn-graded

case.

(ii) If M is finitely generated then Ext ·(M,−) = Ext ·(M,−). In particular, summing the Betti or

Bass numbers over all b (or all b with fixed Z-degree) gives the same result as computing directly

in the nongraded (or Z-graded) case.
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In what follows, we will need the notion of a flat resolution in M. This is defined exactly

like a free resolution, except that the resolving modules are required to be flat instead of free,

where flat means acyclic for Tor [18], Section 2.4. Recall that free and flat are equivalent for

finitely generated S-modules; this is a simple consequence of the grading and Nakayama’s lemma.

However, non-finitely generated flat modules, such as localizations of S, may fail to be free, or even

projective.

Proposition 3.3 (i) Ext ·(M,N) can be calculated as the homology of the complexes obtained either

by applying Hom(−, N) to a projective resolution of M in M or by applying Hom(M,−) to an

injective resolution of N in M.

(ii) Tor ·(M,N) can be calculated as the homology of the complexes obtained by either tensoring

with N a flat resolution of M in M or by tensoring with M a flat resolution of N in M.

Proof: (i) Remark 3.2(i) above provides enough injectives to use [18], Definition 2.5.1, Exam-

ple 2.5.3, and Exercise 2.7.4.

(ii) [18], Theorem 2.7.2 and Exercise 2.4.3. 2

Lemma 3.4 N∧ = HomS(N,S∧).

Proof: [5], Proposition 3.6.16(c), whose proof holds just as easily in the Zn-graded case. 2

The next theorem is the starting point for the comparison of Betti and Bass numbers. Its

corollary, which carries out the lattice complementation, is fundamental to the rest of the results

in this section.

Proposition 3.5 For any module N , µi,b(N) = βi,−b(N∧).

Proof: A module J is injective if and only if J∧ is flat, because

Hom(− , J) = Hom(− , Hom(J∧, S∧) ) = Hom(−⊗ J∧ , S∧).(1)

Indeed, the first term being an exact functor means that J is injective, while the last term being an

exact functor means that J∧ is flat, since Hom(−, S∧) is a priori a faithful exact functor. It follows

that a complex J · : 0→ J0 → J1 → · · · is an injective resolution of N inM if and only if (J ·)∧ is

a flat resolution of N∧. Substituting k for (−) in Equation (1) and applying Proposition 3.3 we get

Ext i(k,N) ∼= Tor i(k,N
∧)∧(2)

from which the result follows at once. 2

Corollary 3.6 µi,b(T/M) = βi,−b(MT ) for any monomial module M ⊆ T . 2
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The next few results are preliminary to the theorems relating the Betti numbers of I to the Bass

numbers of I (Theorem 3.12) and the Bass numbers of I [a] (Theorem 4.10).

Proposition 3.7 Let I be an ideal. Then

(i) βi,b ( Ĩ ) = 0 if b 6� aI .

(ii) βi,b ( Ĩ ) = 0 if b 6� 1.

(iii) βi,b ( Ĩ ) = βi,b ( I ) if 1 � b.

Proof: Given any submodule M ⊆ T , define for each b ∈ Zn the following simplicial subcomplex

of ∆:

Kb(M) = {F ∈ ∆ | xb−F ∈M} .
It is a result of [9] and [12] (and extended to the case M ⊆ T by [4]) that

βi,b(M) = dimk H̃i(Kb(M); k),

the dimension of the ith simplicial homology of Kb(M) with coefficients in k. To prove (i) and (ii) it

suffices to show that Kb(Ĩ) is a cone (and therefore acyclic) unless 1 � b � aI . If aI = (a1, . . . , an)

and bi ≥ ai+1, then it follows from Proposition 2.6(ii) that Kb(Ĩ) is a cone with vertex {i}, proving

(i). That Kb(Ĩ) is a cone with vertex {i} if bi ≤ 0 follows directly from the definition of Čech hull,

proving (ii). Finally, (iii) holds because Kb(Ĩ) = Kb(I) whenever b � 1. 2

Lemma 3.8 Let M ⊆ T . Then βi,b(M ) = βi,b(M/M ∩ m̃a+1 ) if b � a.

Proof: It follows from Example 2.7(ii) that (M ∩ m̃a+1)b = 0 if b � a, so the Taylor resolution of

it (see [16] for the original or [4], Proposition 1.5 for a treatment including submodules of T ) forces

βi,b(M ∩ m̃a+1 ) = 0 for all b � a. Applying Tor to the exact sequence

0→M ∩ m̃a+1 →M →M/M ∩ m̃a+1

yields the result. 2

Lemma 3.9 If i < n then Ext i(k, S/I) ∼= Ext i(k, T/I), and in the remaining case i = n we have

Extn(k, S/I) = k[1].

Proof: One can first calculate Ext i(k, S) =

{
k[1] if i = n
0 otherwise

from the Koszul complex and

Ext i(k, T ) = 0 for all i because T is injective in the category M. Using the long exact sequence of

Ext from 0→ S → T → T/S → 0 one finds that Ext i(k, S) ∼= Ext i−1(k, T/S).

From the above calculations and the long exact sequence of Ext arising from

0→ S/I → T/I → T/S → 0
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the lemma will follow if we can show that the map

Extn−1(k, T/S)→ Extn(k, S/I)

is an isomorphism. But S is a regular ring, so Extn(k, S/I) is nonzero a priori because of [5],

Proposition 3.1.14 and [5], Theorem 3.1.17, so it is enough to prove that the 1-dimensional vector

space Extn−1(k, T/S) ∼= Extn(k, S) ∼= k[1] maps surjectively, i.e. that Extn(k, T/I) = 0. Now

Extn(k, T/I) ∼= Extn+1(k, I) because of the exact sequence

0→ I → T → T/I → 0,

and Extn+1(k, I) = 0 because of the same [5] reference as above. 2

The next main result, Theorem 3.12, is really a rephrasing of an observation made in the proof

of [9], Theorem 5.2. While it is possible, by quoting the self-duality of the Koszul complex, to

extend the result to include all S-modules, the proof here demonstrates effectively the interaction

of Alexander duality with other kinds of duality. Aside from the intrinsic interest in its proof,

Theorem 3.12 will find an application in the proof of Theorem 4.10. Two preliminary results are

needed, the first of which will also be used in the proof of Proposition 4.6.

Lemma 3.10 With J = I+ma+1 we have J̃ T = I [a][a]. The same is true if I and I [a] are reversed.

Proof: The last statement is because of Proposition 2.12. By Example 2.7(ii) and Proposition 2.4,

I [a][a] = Ĩ T ∩ S[a] = (Ĩ + S[a] T )T = J̃ T . 2

The reader knowledgeable about linkage will recognize a hint of Theorem 2.1 in the next propo-

sition. Only the special case b = 0 is required in this section. However, the more general result is

a major component in the proof of Theorem 6.11.

Proposition 3.11 Let a � aI , J = I [a] + ma+1, and b ∈ Nn. Then

ExtnS

(
S[b]/ S[b]∩J̃ , S

)
=
(
I / I∩ma+b+1

)
[a + 1].

In particular, taking b = 0 yields Extn(S/J, S) ∼=
(
I/I∩ma+1

)
[a + 1].

Proof: The module T/J̃ is the k-dual of the finitely generated module I[a] by Lemma 3.10, and is

hence artinian by Matlis duality, cf. [7], Theorem 2.1.4. Thus our module S[b]/ S[b]∩J̃ ⊆ T/J̃ is

also artinian, and (obviously) finitely generated, as well. Since the canonical module of S is S[−1]

by [7], Corollary 2.2.6, local duality (in the form of [7], Theorem 2.2.2) applied to the zeroeth local
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cohomology module implies the first equality of the following:

ExtnS

(
S[b]/ S[b]∩J̃ , S

)
=
(
S[b]/ S[b]∩J̃

)∧
[1] by local duality

=
(
J̃ T/ J̃ T∩S[b]T

)
[1] by Proposition 2.4(vii)

=
(
I/ I∩S[a + b]T

)
[a + 1] by Lemma 3.10 and shifting by [−a][a]

=
(
I/ I∩ma+b+1

)
[a + 1] by Example 2.7(ii). 2

Given an artinian ideal J , the list of Betti numbers for the canonical module Extn(S/J, S[−1]) of

S/J is essentially the reverse of the list of Betti numbers for J ; see, for instance, [5], Corollary 3.3.9.

On the other hand, there is the lattice-complementation view of Alexander duality, which emerges in

Corollary 3.6 as a relation between the Betti numbers of a monomial module and the Bass numbers

of its T -dual. These two dualities can be combined to compare the Betti numbers of I to the Bass

numbers of the same ideal I:

Theorem 3.12 For all i ∈ Z and b ∈ Zn,

βn−i ,b (S/I ) = µ i ,b−1 (S/I ).

Proof: The case i = n follows from the calculations of Lemma 3.9, so assume from now on that

i ≤ n−1. In particular, we can calculate the Bass numbers from T/I instead of S/I by Lemma 3.9.

Let a = aI + 1. All of the Betti numbers are zero in degrees b 6� a by Proposition 3.7(i) and (iii).

As for the Bass numbers, we can use the fact that, with J := I [a] + ma+1, we have I T = J̃ [a] by

Lemma 3.10. It follows that µi,b−1(T/I ) = βi,1−b( J̃ [a] ) = βi,a+1−b( J̃ ) by Corollary 3.6, and then

Proposition 3.7(ii) implies that these numbers are zero if b 6� a.

From now on, assume b � a and 0 ≤ i ≤ n− 1. Let J = I [a] + ma+1 and calculate

µ i ,b−1 (S/I ) = µ i ,b−1 (T/I ) by Lemma 3.9 and i ≤ n− 1

= β i ,a+1−b ( J̃ ) by Corollary 3.6, since I T = J̃ [a]
= β i ,a+1−b ( J ) by Proposition 3.7(iii) and b � a
= β i+1 ,a+1−b (S/J ) since i ≥ 0

= βn−i−1 ,b−1−a

(
Extn(S/J, S)

)
since S is Gorenstein and S/J is artinian

= βn−i−1 ,b

(
(I/I∩ma+1)

)
by Proposition 3.11

= βn−i−1 ,b ( I ) by Lemma 3.8 and b � a
= βn−i ,b (S/I ) since i ≤ n− 1

proving the theorem. 2
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4 Localization and restriction

This section aims to reveal the equality (Theorem 4.10) between Betti numbers of I and localized

Bass numbers (Definition 4.8) of I [a]. This equality generalizes Theorem 2.13. As a consequence

of the equality, an inequality between Betti numbers of I and I [a] is obtained in Theorem 4.13,

generalizing to arbitrary monomial ideals an inequality of [2] which was proven for radical ideals.

The next proposition should be thought of as the nonlocalized precursor to Theorem 4.10(i).

Proposition 4.1 Let I be an ideal and a � aI . If 1 � b � a then βi,b( I ) = µi,ba−1(S/I [a] ).

Proof: If, to start with, b � a, then

βi ,b (M ) = µi ,−b

(
(M/M ∩ m̃a+1)∧

)
by Lemma 3.8 and Proposition 3.5

= µi ,−b

(
S[a]/S[a] ∩MT

)
by Proposition 2.4(vii) and Example 2.7(ii)

= µi ,a−b

(
S/MT [−a] ∩ S

)
.

Substituting M = Ĩ we get βi ,b( Ĩ ) = µi ,a−b(S/I [a] ) if b � a, and when the assumption 1 � b is

added, a− b = ba − 1 and the result is a consequence of Proposition 3.7(iii). 2

Theorem 4.10 is the combination of the previous proposition with localization and restriction of

scalars. The following definitions will provide concise notation for these operations, which will be

needed also for the definition of Bass numbers at primes other than m (Definition 4.8). Recall that

F = {1, . . . , n} \ F = 1− F .

Definition 4.2 Let ∆ be the (n− 1)-simplex on the vertices {1, . . . , n} and F ∈ ∆. Define

(i) N(−F ) := S[x−F ]⊗S N for arbitrary modules N
(ii) S[F ] := k[xi | i ∈ F ] a ZF-graded k-subalgebra of S
(iii) N[F ] :=

⊕
b∈ZF Nb a ZF-graded S[F ]-module

(iv) N(F ) := N(−F )[F ]

The operations on N listed above are all exact and commute with sums. They should be thought

of as: (i) homogeneous localization at mF , (iii) taking the “degree zero part” of N with respect to

F , and (iv) taking the “degree zero part of the homogeneous localization at mF ” as in algebraic

geometry. In (ii) and (iii), the copy of ZF may be thought of as sitting inside Zn in the obvious

way: as the space spanned by the basis vectors in the support of F . Thinking of ZF this way can

cause notational problems, however. For instance, any Zn-graded S-module N can be thought of

as a ZF -graded S[F ]-module which in degree b ∈ ZF is⊕
c·F = b

Nc =
⊕

b′ ∈ZF

Nb + b′ ,
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where c · F denotes the restriction to F as in Section 1. Note that the right-hand side gives this

vector space the structure of a ZF -graded S[F ]-module. The convention will be the following:

If N is a ZF -graded S[F ]-module and b ∈ ZF , the graded piece of N in degree b will be

denoted Nb·F . That way, if N happens also to be a Zn-graded S-module, the usual notation

Nb can retain its old meaning as the degree b part in the Zn-grading.

Even if b 6∈ ZF it will sometimes be convenient to use Nb·F to denote the b · F graded piece in

the ZF -grading; i.e. with c = b · F ∈ ZF , we set Nb·F := Nc·F . The next Lemma follows from the

definitions and the convention above. In each of (i)–(v), the objects are ZF -graded S[F ]-modules, but

in (i), the objects may also be considered as ZF -graded S[F ]-modules or even ZF ×ZF = Zn-graded

S[F ] ⊗k S[F ] = S-modules.

Lemma 4.3 For any F ∈ ∆,

(i) M(−F ) = T[F ] ⊗k M(F ) = S(−F )⊗S(F )
M(F )

(ii) M[F ] = M0·F

(iii) M [a][F ] = Ma·F [a · F ]

(iv) (Ĩ )[F ] = Ĩ [F ]

(v) (M T )[F ] = (M[F ])
T[F ]

where the right-hand sides of (iv) and (v) are, respectively, the Čech hull and T -dual over S[F ]. 2

For submodules M ⊆ T the various gradings allow for convenient characterizations of localiza-

tion as in Definition 4.2(iv). They use the fact that for any b ∈ Zn, Mb·F is naturally a submodule

of T[F ] = T(F ).

Proposition 4.4 Let M be a monomial module.

(i) M(F ) =
⋃

b∈ZF

Mb·F .

If M can be generated in degrees c satisfying c · F � a · F then

(ii) M(F ) = Ma·F .

Proof: (i) Observe that M ⊆ M(−F ) ⊆ T because everything is torsion-free. Thus, if b ∈ ZF ,

then multiplication by x−b induces an inclusion Mb·F → M(F ). For the other inclusion, note that

any monomial in M(F ) can be written as xb · xc for some xc ∈M and b = −(c · F ) ∈ ZF .

(ii) The collection {Mb·F}b∈ZF of S[F ]-submodules of T[F ] is partially ordered by inclusion because

M is a module. The union in (i) stabilizes after a · F if M is generated in degrees c satisfying

c · F � a · F . 2
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Example 4.5 Figure 3 illustrates some parts of Definition 4.2 and Lemma 4.3 in a specific case. For

notation, x, y, and z are identified with 1, 2, and 3 ∈ {1, . . . , 3} = ∆. The face F is {y, z} = {2, 3},
while b = (4, 4, 2). The small colored dots represent generators or irreducible components in the

restricted ideals. It is not true that b � aI , so Proposition 4.4 does not apply; nevertheless,

Ib·F = I(F ) for these b, I, and F . Figure 3 can also be used as a test case for Proposition 4.6.

Proposition 4.6 (I [a])(F ) = (I [F ])
[a·F ] as ideals in S(F ) = S[F ]. In words, dualizing and then

localizing is the same as restricting and then dualizing.

Proof: It is enough to show that (I [a])(F )[a · F ] = (I [F ])
[a·F ][a · F ]. Now

(I [a])(F )[a · F ] = (I [a])a·F [a · F ] by Proposition 4.4(ii) and Proposition 2.12

= (I [a][a])[F ] by Lemma 4.3(iii)

=
((

(I + ma+1)̃
)T)

[F ]
by Lemma 3.10,

and one can use the rules 4.3(v) and then 4.3(iv) for interchanging the various operations to get

the last line to equal (
(I[F ] + ma·F+F

[F ])̃
)T[F ]

,

where (−)T[F ] is T -duality over S[F ] as in Lemma 4.3(v). Another application of Lemma 3.10 (over

S[F ] this time) gives the desired result. 2

Proposition 4.7 Let I ⊆ S and b ∈ ZF . Then βi,b(I ) = βi,b·F (I[F ]).

Proof: Let F be the Taylor resolution of I (see the proof of Lemma 3.8 for references). Then F[F ]

is the Taylor resolution of I[F ]. Furthermore, (k ⊗S F)[F ] = k ⊗S[F ]
F[F ] because if b ∈ Nn then(

k ⊗S S[−b]
)

[F ]
= k ⊗S[F ]

S[−b][F ] =

{
k[−b] if b ∈ ZF

0 if b 6∈ ZF .
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Thus the Betti numbers in question are calculated from the same complex of k-vector spaces. 2

Definition 4.8 (Bass numbers for arbitrary monomial primes) Given a module N and a

degree b ∈ ZF , the i th Bass number of N with respect to F (or the prime ideal mF ) in degree

b is defined as

µi,b(F,N) := dimk

(
Ext iS(F )

(k,N(F ))b

)
.

Remark 4.9 When F = 1 this definition agrees with the Bass numbers of Definition 3.1.

Now comes the main result of this section. It can be thought of as a far-reaching generalization

of Theorem 2.13, which is a special case, pending the appropriate interpretation of Bass numbers—

see Proposition 4.12 and the second proof of Theorem 2.13 that follows it. In part (i) of the next

theorem, the case where b has full support is Proposition 4.1.

Theorem 4.10 If 0 6= F � b � a·F then for all i ∈ Z we have

(i) βi ,b(I) = µi ,ba−F (F, S/I [a])
(ii) µn−i−1 ,b−1(S/I) = µi ,ba−F (F, S/I [a])
(iii) βi ,b(I) = β|F |−i−1 ,ba(I [a]

(F )).

In any of these formulas, I and I [a] can be switched, and the same goes for b and ba.

Proof: Statements (ii) and (iii) follow easily from (i), in view of Theorem 3.12 and the fact that

βi,b(I) = βi+1,b(S/I) when b 6= 0. To prove (i), note that ba = (b · F )a·F , so

β i ,b ( I ) = β i ,b·F ( I [F ] ) by Proposition 4.7

= µ i ,ba−F (S[F ]/I [F ]
[a·F ] ) by Proposition 4.1

= µ i ,ba−F (S(F )/I
[a]

(F ) ) by Proposition 4.6

= µ i ,ba−F (F , S/I [a] ) by definition

since (−)(F ) is exact. Note that the Bass number in the penultimate line is with respect to the

maximal ideal of S(F ). The last statement of the theorem is true because (ba)a = b and (I [a])[a] = I,

and because imposing the condition on b is equivalent to imposing the same condition on ba. 2

Remark 4.11 Part (i) of the theorem can be thought of as the generalization to arbitrary monomial

ideals of the formulas in [6], Proposition 1 and [2], Theorem 2.4, using [9], Theorem 5.2 and the

fact that links come from localization ([9], Proposition 5.6).
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As a consequence of the theorem, the list of Betti numbers of Ia will be independent of a, though

the Zn-degrees in which they occur will vary with a. Indeed, the list of Betti numbers of Ia is just

the list of (localized) Bass numbers of I by part (i) of the theorem. Thus the collection of ideals

that are dual to I are very closely related homologically. This will be highlighted again in Section 5

in terms of various geometrically defined resolutions.

Before the above remark, the symbol Ia had not appeared in this section (or the last) without

brackets on the a; that is, none of the results have been logically dependent on Definition 1.5 or

Theorem 2.13. Therefore, Theorem 4.10 can be used to give a second proof of Theorem 2.13. In

fact, this “second proof” was discovered before the more elementary proof in Section 2. The next

proposition is what allows the irreducible decomposition to be read off of the zeroeth Bass numbers

just as the minimal generators are read off the zeroeth Betti numbers.

Proposition 4.12 Given an ideal I ⊆ S the following are equivalent for b ∈ ZF :

(i) mb is an irredundant irreducible component of I.
(ii) µ0,b−F (F, S/I) = 1.
(iii) µ0,b−F (F, S/I) 6= 0.

Proof: Let I =
⋂
j Qj be the (unique) irredundant decomposition of I into irreducible ideals Qj.

Then we have an injection 0 → S/I → ⊕
j S/Qj which, by the proofs of [17], Propositions 3.16

and 3.17, induces an isomorphism

HomS(S/mF, S/I)(−F )→
⊕
j

HomS(S/mF, S/Qj)(−F );(3)

this is because the functor ∆p(·)p in the [17] reference is easily seen to be Hom (R/p, ·)p (so we can

take p = mF ). Using Lemma 4.3(i) we can move the localization into and out of the Hom: for any

finitely generated S-modules L and N ,

HomS

(
L,N

)
(−F ) ∼= HomS(−F )

(
L(−F ), N(−F )

)
∼= S(−F )⊗S(F )

HomS(F )

(
L(F ), N(F )

)
∼= T[F ] ⊗k HomS(F )

(
L(F ), N(F )

)
.

Treating these as ZF -graded S[F ]-modules and taking the degree 0 ·F part in the last line yields

HomS(F )

(
L(F ), N(F )

)
. Applying this procedure to Equation (3) reveals an isomorphism

HomS(F )

(
k, (S/I)(F )

) ∼= ⊕
j

HomS(F )

(
k, (S/Qj)(F )

)
.

Since we can calculate

µ 0,b−F (F, S/Qj) =

{
1 if Qj = mb

0 otherwise

E. Miller Alexander Duality for Monomial Ideals and their Resolutions

Rejecta Mathematica Vol. 1, No. 1, July 2009

This work is published under the Creative Commons Attribution-NonCommercial License. http://creativecommons.org/licenses/by-nc/2.5/legalcode

40

http://math.rejecta.org
http://creativecommons.org/licenses/by-nc/2.5/legalcode


the proposition follows from the definition of Bass numbers. 2

Second proof of Theorem 2.13: Every generator xb of I corresponds to a nontrivial zeroeth Betti

number of I which satisfies the condition F � b � a · F for F =
√

b because I ⊆ S and a � aI .

After applying Theorem 4.10(i) and the previous proposition, we can conclude that each generator

of I does indicate the presence of an appropriate irreducible component of I [a]. To show that each

nontrivial zeroeth Bass number of I [a] comes from some Betti number of I, we demonstrate that

if b ∈ ZF and µ0,b−F (F, S/I) 6= 0 then F � b � a · F . Localizing at mF , we may assume that

F = 1. Clearly b � 1 since mb is m-primary, so the desired result falls out of Theorem 3.12 and

Proposition 3.7. 2

Next on the agenda is the generalization to arbitrary monomial ideals of an inequality of [2] for

squarefree ideals. The topological argument involving links employed there is preempted here by a

simple algebraic observation involving localization (which gives links in the squarefree case, see [9],

Proposition 5.6).

Theorem 4.13 If a � aI and F � b � a·F then

βi ,b(I) ≤
∑

c·F = ba

β|F |−i−1 , c (Ia).

Proof: Let F be a minimal free resolution of Ia. Localizing at mF we obtain a free resolution F(F )

of Ia
(F ) over S(F ). The generators of F(F ) as a free S(F )-module are in bijective correspondence with

the generators of F itself. Specifically, for any b′ ∈ ZF we find that S[c](F ) = S(F )[b
′ · F ] if and

only if c · F = b′. Thus the number of summands of F(F ) in homological degree |F | − i − 1 and

ZF -degree ba is equal to ∑
c·F = ba

β|F |−i−1 , c (Ia)

since F is minimal. On the other hand, the number of such summands is clearly ≥ β|F |−i−1,ba(Ia
(F )),

with equality if and only if F(F ) is minimal. Since this last number is equal to βi,b(I) by Theo-

rem 4.10, we are done. 2

Corollary 4.14 (Bayer-Charalambous-Popescu) If I is squarefree then

βi ,b(I) ≤
∑

b�c�1

β|b|−i−1 , c(I
∨)

for 0 ≤ i ≤ n− 1 and 0 � b � 1.

Proof: This is a special case of the theorem once it is noted that (i) β|b|−i−1,c(I
∨) = 0 unless

0 � c � 1, and (ii) 0 � c and c · √b = b imply c � b. 2
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5 Duality for cellular complexes: the cohull resolution

This section explores the effect of Alexander duality on various geometrically defined free resolu-

tions, in the spirit of [3], [4], and [15]. First, the concept of a geometrically defined resolution is

broadened past cellular resolutions to include relative cocellular resolutions (Definition 5.3). The

key result (Theorem 5.8) is presented, though the majority of its proof occupies Section 6. As

an application, it is shown how irreducible decompositions can be specified by cellular resolutions

(Theorem 5.12). The culmination of these ideas is a new canonical geometric resolution for mono-

mial ideals (Definition 5.15). It is called the cohull resolution, and is defined by applying Alexander

duality to the hull resolution of [4]. As a special case, the co-Scarf resolution of a cogeneric mono-

mial ideal of [15] is seen to be the cohull resolution (Theorem 5.23), and is thus Alexander dual to

the Scarf resolution of a generic monomial ideal [3]. A number of examples are presented, including

permutahedron and forest ideals.

Conventions regarding grading and chain complexes:

A chain complex of S-modules

F : · · · → Ni+1 → Ni → Ni−1 → · · · , Ni in homological degree i,

is viewed as a (homologically) Z-graded S-module
⊕

Ni with a differential ∂ of degree −1.

If “ [a]” is attached to F then each summand is to be shifted in its Zn-grading to the left by

a, while “ (j)” indicates that the homological degrees are to be shifted down by j, yielding

the notation

F[a](j) : · · · → Ni+1[a]→ Ni[a]→ Ni−1[a]→ · · · , Ni in homological degree i− j.

Here, N [a]b = Na+b for any S-module N by definition. Taking the S-dual F∗ := Hom(F, S)

changes ∂ to its transpose δ, and makes homological degrees into cohomological degrees,

which are the negatives of homological degrees:

F∗ : · · · ←N∗i+1←N∗i ←N∗i−1← · · · , N∗i in homological degree − i
= cohomological degree i.

Labelled cell complexes provide compact vessels for recording the monomial entries in certain

Zn-graded free resolutions of an ideal. [4] introduces this notion in the context of monomial modules,

but attention is restricted to boundary operators of the cell complex. The definitions below extend

the concept to include coboundary operators, as well. For the reader’s convenience, the definition of

a labelled regular cell complex and the cellular free complex it determines is recalled briefly below,

although the reader is urged to consult [4], Section 1 for more details.

Let Λ ⊆ Zn be a set of vectors, and let X be a regular cell complex whose vertices are indexed

by the elements of Λ. For c, c′ ∈ Zn, define the join c ∨ c′ to be the componentwise maximum,
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i.e. c ∨ c′ is the smallest vector which is greater than or equal to both c and c′ in each coordinate:

(c ∨ c′)i = max(ci, c
′
i). Given a face F ∈ X, define the label aF of F to be the join

∨
v∈F av of the

labels on the vertices in F , where av ∈ Λ is the element corresponding to v. To avoid confusion,

the symbol |X| will be used to denote the unlabelled underlying cell complex of the labelled cell

complex X.

We assume that |X| comes equipped with an incidence function ε(F, F ′) ∈ {1, 0,−1} defined on

pairs of faces, which is used to define the boundary map in the oriented chain complex of |X| (with

coefficients in k). For each F ∈ X, let SF be the free S-module with one generator F in degree aF .

The cellular complex FX is the homologically and Zn-graded chain complex of S-modules

FX =
⊕

F∈X, F 6=∅
SF with differential ∂F =

∑
G∈X,G 6=∅

ε(F,G)
mF

mG

·G,

where mF := xaF . The homological degree of the basis vector F ∈ SF is the dimension of F ∈ |X|.
If FX is acyclic, it will be said that X supports a free resolution of the module 〈xav | v ∈ X is a

vertex 〉.

Remark 5.1 In [4] it is assumed that the elements of Λ are pairwise incomparable (as elements

in the poset Zn), but Λ is not assumed to be finite. Here, however, Λ will always be finite, but

pairwise incomparability is not assumed. It is easily verified that all of the results in [4], Section 1

remain true under these hypotheses.

Definition 5.2 (Relative Cellular Complexes) A relative cellular complex F (X,Y ) is the quo-

tient of a cellular complex FX supported on a labelled regular cell complex X by a subcomplex FY
for some regular cell subcomplex Y ⊆ X, with the labelling on Y induced by the labelling on X.

Definition 5.3 (Relative Cocellular Complexes) A relative cocellular complex F (X,Y ) is ob-

tained by taking F∗(X,Y ) for a pair (X, Y ) of labelled relative regular cell complexes. If Y is empty,

F (X,Y ) may be denoted FX and called a cocellular complex supported on X.

Remark 5.4 The relative cocellular complex F (X,Y ) can be viewed as the homogenization of the

relative cochain complex of the pair (X, Y ), as long as the label on a dual face F∗ is the negative−aF
of the label on the face F . The coboundary can then be written as δG∗ =

∑
(F∈X,F 6=∅) ε(F,G)mF

mG
·F∗.

Definition 5.5 Given a labelled regular cell complex X and a vector b ∈ Zn, define the following

two labelled subcomplexes of X:

(i) XB(b) := {F ∈ X | aF � b}, the positively bounded subcomplex of X with respect to b.
(ii) XU(b) := {F ∈ X | aF 6� b}, the negatively unbounded subcomplex of X with respect to b.

Finally, let XU := XU(1) be simply the negatively unbounded subcomplex of X.
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Example 5.6 Let I be as in Example 1.8. The labelled complex X in Figure 4 is the Scarf

complex [3] of I + m(5,6,6) (see also Example 5.14, below). Hence FX is a minimal free resolution

by [3], Theorem 3.2. In this case, (5, 6, 6) = aI + 1, but z5 is already in I. The label “215” in the

diagrams is short for (2,1,5). The subcomplex XB(4, 5, 5), which is the Scarf complex of the ideal

I itself, is also depicted in Figure 4 (see Proposition 5.7, below). The subcomplex XU is depicted

in Figure 5 along with a representation of the labelled relative cellular complex (X,XU) and the

relative cocellular complex F(X,XU ) of free S-modules determined by it. For this, the edges have

been oriented towards the center and the faces counterclockwise. The left copy of S8 represents

the 2-cells in clockwise order starting from 361, the right copy of S8 represents the edges clockwise

starting from 161, and the copy of S represents the lone vertex. The other vertices and edges are

not considered since they lie in the subcomplex XU . It is not a coincidence that the negatively

unbounded subcomplex of X is the topological boundary of X—this will always happen for the

Scarf complex of a generic artinian monomial ideal, cf. Theorem 5.18. 2

Recall that aI is the exponent on the least common multiple of the minimal generators for I.

Suppose that we have a cellular resolution FX of the ideal I + ma+1 with a � aI .

Proposition 5.7 FXB(b) is a cellular resolution of I for any b such that aI � b � a.

Proof: With the conditions on b, the ideal I is generated by all monomials in I + ma+1 whose

exponent is � b, so the result is a direct consequence of [4], Corollary 1.3. 2

Duality for cellular resolutions says that if the cellular resolution FX of I + ma+1 has minimal

length, a resolution for the Alexander dual Ia with respect to a can also be recovered from X:

Theorem 5.8 If the cellular resolution FX of I+ma+1 has length n−1 then F (X,XU )[−a−1](1−n)

is a relative cocellular resolution of Ia. Furthermore, this dual resolution is minimal if FX is.
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XU = XU(1) (X,XU)



x2 −y 0 0 0 0 0 0
0 x −y2 0 0 0 0 0
0 0 x −y2 0 0 0 0
0 0 0 z −x3 0 0 0
0 0 0 0 z3 −x 0 0
0 0 0 0 0 y −z 0
0 0 0 0 0 0 y2 −z
−z2 0 0 0 0 0 0 y2





y5

x2y4

x3y2

x4

xz
z4

yz3

y3z2


0 ← S8 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S8 ←−−−−−−− S ← 0

Figure 5

Proof: The first statement will be a direct consequence of Theorem 6.11, below; the necessary

assumption here that FX has length n−1 is what makes F (X,XU )[−a−1](1−n) a resolution instead

of just a free complex—that is, there are no terms in negative homological degrees. The construction

of F (X,XU ) from FX preserves minimality because the matrices defining the differential of the former

are submatrices of the transposes of those defining the latter, and we need only check that these

entries are in m. 2

Remark 5.9 (i) The hypothesis of the theorem requires that X have dimension (n − 1), so that

FX has minimal length, but it does not require that FX actually be a minimal resolution.

(ii) It can be shown that XU may be replaced in the theorem by XU(b + 1) for any b satisfying

0 � b � aI − aI∨ . Here, again, is the mysterious invariant from the remark after Corollary 2.14.

In most cases of interest, though, XU = XU(b) for all such b.
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Example 5.10 The free complex in Figure 5 is the minimal free resolution of the ideal I∨ from

Example 1.8. The reader may check, for instance, that the product of the large matrix in Figure 5

with the list of generators for I∨ (which may be treated as a matrix with one row) is zero. Note that

the homological and Zn-graded shifts promised by Theorem 5.8 aren’t visible from the matrices. 2

Theorem 5.8 affords a generalization of [3], Theorem 8.3 on reading irreducible decompositions

off of cellular resolutions. We will need the following.

Lemma 5.11 If the labelled cell complex X supports a minimal free resolution of an artinian ideal

J ⊆ S then X is pure of dimension n− 1.

Proof: Any facet has dimension > 0, so suppose that F is a facet of dimension d > 0. Denote by

F∗ the basis element of the cocellular complex FX . The modules Ext ·(J, S) can be calculated as the

cohomology of FX by definition, and the coboundary δ(F∗) is zero because F is a facet. Moreover,

the image of δ is contained in mFX by minimality of FX , whence F∗ is not itself a coboundary.

Thus F∗ represents a nonzero element of Extd(J, S) ∼= Extd+1(S/J, S). It follows that d = n − 1

because S/J has only one nonzero such Ext module [5], Proposition 3.3.3(b)(i). 2

For the statement of the next theorem, the following notation is convenient. Suppose a � aI
and define, for any 1 � b � a + 1, the bounded part bB := (a + 1 − b)a of b with respect to a to

be the vector whose i th coordinate is bi if bi ≤ ai and zero if bi = ai + 1.

Theorem 5.12 Let FX be a minimal cellular resolution of I + ma+1. Then the facets of X are in

bijection with the irredundant irreducible components of I, and the intersection
⋂
F m(aF )B over all

facets F ∈ X is an irredundant irreducible decomposition of I.

Proof: It follows from Lemma 5.11 that under these conditions X must be pure of dimension

n − 1. Using this, it suffices to show that the label on any facet is � 1, for then each facet

corresponds to a minimal generator of Ia by Theorem 5.8 and we are done by Proposition 1.7.

Suppose, then, that aF is ≤ 0 in some coordinate for some facet F ; say (aF )n = 0. For t >> 0

consider Y := XB(t, t, . . . , t, 0), which gives a resolution of J := (I + ma+1)∩ k[x1, . . . , xn−1] by [4],

Corollary 1.3. The resolution FY is minimal because FX is, and Y has dimension n − 1 because

F ∈ Y . On the other hand, J is an artinian ideal of k[x1, . . . , xn−1], which contradicts Lemma 5.11

(with n replaced by n− 1). 2

The major consequence of Theorem 5.8 is the construction of the cohull resolution (Defini-

tion 5.15) from the hull resolution [4], Section 2. Therefore, we recall here the definition of the hull

complex. Let t > (n+ 1)! and define tb := (tb1 , . . . , tbn). The convex hull of the points {tb | xb ∈ I}
is a polyhedron Pt whose face poset is independent of t. It is shown in [4] that the vertices of Pt
are given by those tb such that xb is a minimal generator of I. The hull complex hull(I) is defined

to be the bounded faces of Pt, but it may also be described as those faces of Pt admitting a strictly

positive inner normal. The hull complex is labelled via the labels on its vertices.
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Theorem 5.13 (Bayer-Sturmfels) The free complex Fhull(I) is a cellular resolution of I. 2

Example 5.14 Let Λ be the set of exponents on the minimal generators of a generic monomial

ideal I, and let X be the labelled simplex with vertices in Λ. The Scarf complex of I is the labelled

subcomplex ∆I ⊆ X determined by

∆I = {F ∈ X | aF = aG ⇒ F = G}.

It is minimal and coincides with the hull resolution of I by [4], Theorem 2.9. See Example 5.6. 2

Definition 5.15 (The cohull resolution) The cohull resolution cohulla(I) of an ideal I with re-

spect to a � aI is defined to be the relative cocellular resolution F (X,XU )[−a − 1](1 − n), where X

is the hull complex of Ia + ma+1. The canonical cohull resolution, or simply the cohull resolution

cohull(I) of I is obtained by taking a = aI .

The cohull resolution, like the hull resolution, is a possibly nonminimal resolution that preserves

some of the symmetry (in the generators and irreducible components) of an ideal.

There are some geometric properties of hull resolutions of artinian ideals that make cohull

resolutions a little more tangible. Suppose, for instance, that J is an artinian monomial ideal, with

xd11 , . . . , x
dn
n among its minimal generators. Choose t > (n+ 1)!, and let v1, . . . , vn be the vertices of

the polyhedron Pt determined by these minimal generators. The vertices {vi} of Pt span an affine

hyperplane which will be denoted by H.

Fix a strictly positive inner normal ϕG for each G ∈ hull(J). Recall that Pt is contained in the

(closed) polyhedron 1 + Rn
+ (since monomials in S have no negative exponents). Each face G ∈

hull(J) spans an affine space which does not contain the vector 1 ∈ Rn because the hyperplane

containing G and normal to ϕG does not contain 1. Therefore the projection π from the point 1 to

the hyperplane H induces a homeomorphism hull(J)→ π(hull(J)). In fact,

Proposition 5.16 If J is artinian, π(hull(J)) is a regular polytopal subdivision of the simplex

H ∩ Pt.

Proof: That H ∩Pt ⊂ 1+Rn
+ is a simplex follows because it is convex and contains v1, . . . , vn. Now

π induces a map of the boundary ∂Pt → H ∩Pt which is obviously surjective. Suppose that π(w) is

in the interior of H∩Pt for some w ∈ ∂Pt. It is enough to show that if a nonzero support functional

ϕ attains its minimum on Pt at w then ϕ is strictly positive. All coordinates of ϕ are ≥ 0 a priori

because it attains a minimum on Pt; but if the i th coordinate of ϕ is zero then 〈ϕ, vi〉 < 〈ϕ,w〉 and

ϕ cannot be minimized at w. 2

Remark 5.17 This generalizes the result [3], Corollary 4.5 for generic artinian monomial ideals,

in view of [4], Theorem 2.9. Regular subdivisions here are as in [19], Definition 5.3.
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We arrive at the following characterization for artinian hull complexes:

Theorem 5.18 If X is the hull complex of an artinian monomial ideal, then |X| is a simplex and

the negatively unbounded complex XU is the topological boundary of X.

Proof: By the previous proposition, it suffices to show that a face G of the hull complex of any

(not necessarily artinian) ideal has a label without full support if and only if it is contained in

the topological boundary of the shifted positive orthant 1 + Rn
+. But this holds because the i th

coordinate of aG is zero if and only if every vertex of G (and hence every point in G) has i th

coordinate 1. 2

Although cohull resolutions are relative cocellular by definition, they can frequently be viewed

as cellular resolutions, as well. In fact, with a slight weakening of the notion of labelled cell complex,

all cohull resolutions are weakly cellular. To be precise, define a weakly labelled cell complex to be

the same as a labelled cell complex, except that instead of requiring that the label aF be equal

to the join
∨
v∈F av, we require only that aF �

∨
v∈F av whenever dimF > 0. A free complex or

resolution is called weakly cellular if it is supported on a weakly labelled cell complex.

Theorem 5.19 The cohull resolution of I with respect to a is weakly cellular for any a � aI .

Proof: Let J = I + ma+1 and assume the notation from after Definition 5.15. Define Qt to be the

intersection of Pt with the closed half-space containing the origin and determined by the hyperplane

H. Then Qt is a polytope which may also be described as the convex hull of (all of) the vertices

of Pt. Furthermore, the bounded faces of Pt are simply those faces of Qt which admit a strictly

positive inner normal. Thus X := hull(J) is a subcomplex of the boundary complex of Qt, as is the

boundary ∂X.

Let Y ⊂ ∂Qt be the subcomplex generated by the facets of Qt whose inner normal is not

strictly positive. Denote chain and relative cochain complexes over k by C. (−) and C·(−,−). Then

Y ∩ X = ∂X and the C·(Qt, Y ) = C·(X, ∂X). For elementary reasons, C·(Qt, Y ) ∼= C. (X∨) for

some subcomplex X∨ of the polar polytope Q∨t (use, for instance, the methods of [19], Sections 2.2–

2.3). Note that the isomorphisms will exist regardless of the incidence functions in question, by [5],

Theorem 6.2.2. That X∨ is weakly labelled follows from the isomorphism C. (X∨) ∼= C·(X, ∂X) and

the remark after Definition 5.3. Indeed, the condition F ⊇ G⇒ aF � aG for faces F,G ∈ (X, ∂X)

is equivalent to the condition F∨ ⊆ G∨ ⇒ −aF � −aG for faces of X∨, and this need only be

applied when F is a facet containing G and F∨ is a vertex of G∨. 2

Proposition 5.20 If a weakly cellular resolution is minimal, it is cellular. In particular, if a cohull

resolution is minimal, it is cellular.

Proof: Let (F̃, ∂̃) denote the augmented complex FX → I → 0, where X is a weakly labelled

complex supporting a free resolution of I. We show that if G ∈ X then aG �
∨
v∈G av implies F is not
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minimal. This is vacuous if dimG = 0, so assume dimG has minimal dimension ≥ 1, and suppose

that aG−ei �
∨
v∈G av. Then ∂̃(G) = xiy for some y ∈ F̃ because dimG is minimal. It follows that

xi∂̃(y) = ∂̃(xiy) = 0, whence ∂̃(y) = 0 because F̃ is torsion-free. Thus ∂̃(G) ∈ xiker(∂̃) ⊆ m · ker(∂̃)

does not represent a minimal generator of ker(∂̃) by Nakayama’s Lemma for graded modules. 2

Remark 5.21 For cohull resolutions the proposition is probably true without the hypothesis of

minimality, but a proof (which would likely be geometric instead of algebraic) has not been found.

In particular, all cohull resolutions in the examples below are cellular. Cellularity of the cohull

resolution is equivalent to the following more concrete statement: the label on any interior face of

the hull complex of an artinian ideal is the greatest common divisor of the labels on the facets that

contain it.

Example 5.22 (continuation of Example 1.9) The minimal resolution of the permutahedron ideal

I of Example 1.9 is, by [4], Example 1.9, the hull resolution, which is supported on a permutahedron.

The minimal resolution of I + m(n+1)1 is also the hull resolution, and is supported on the complex

X which may described as follows.

There are two kinds of faces of X. The first kind are those that make up the boundary ∂X; these

are indexed by the proper nonempty faces F ∈ ∆ and have vertices t(n+1)ei ∈ Pt for i ∈ F (recall

from Section 1 that ei denotes the i th basis vector of Zn and ∆ = {1, . . . , n} is the (n−1)-simplex).

On the other hand, the interior p-faces of X are in bijection with the chains

∅ ≺ F1 ≺ F2 ≺ · · · ≺ Fn−p(4)

of faces of ∆, where Fn−p might (or might not) equal ∆. Note that the interior faces of X for which

Fn−p = ∆ are faces of the permutahedron itself.

More generally, an interior p-face G given by (4) for which Fn−p 6= ∆ is affinely spanned by the

permutahedral (p−1)-face G′ : ∅ ≺ F1 ≺ · · · ≺ Fn−p ≺ ∆ and the “artinian” vertices {t(n+1)ei |
i 6∈ Fn−p} of Pt. In fact, a functional which attains its minimum (in Pt) on G may be produced

directly. For this purpose, define for any F ∈ ∆ the functional F † on Rn to be the transpose of F ;

i.e. 〈F †, ei〉 = 1 if i ∈ F and zero otherwise. Then the functional ϕε := 1† + ε
∑n−p

j=1 F
†
j attains its

minimum (in Pt) on G′ for all 0 < ε << 1. But for ε >> 0 we have 〈ϕε, t(n+1)ei〉 < 〈ϕε, G′〉 whenever

i 6∈ Fn−p. Thus we can choose the unique ε that makes 〈ϕε, t(n+1)ei〉 = 〈ϕε, G′〉 for all i 6∈ Fn−p, so

that ϕε attains its minimum on G.

It is easy to check that the labels on the faces of X are distinct, whence FX is the minimal

resolution of I + m(n+1)1 by [4], Remark 1.4. In particular, the irredundant irreducible components

of I are in bijection with the facets of X by Theorem 5.12, and the generators of the forest ideal

I∨ are given by x(n+1)1−aG for facets G ∈ X. This recovers the generators for I∨ in Example 1.9.

Retaining earlier notation, the face G has dimension 1 + dim(G′). Thus the p-faces of X are in

bijection with the collection of p- and (p−1)-faces of the permutahedron. In fact, the (unlabelled)

E. Miller Alexander Duality for Monomial Ideals and their Resolutions

Rejecta Mathematica Vol. 1, No. 1, July 2009

This work is published under the Creative Commons Attribution-NonCommercial License. http://creativecommons.org/licenses/by-nc/2.5/legalcode

49

http://math.rejecta.org
http://creativecommons.org/licenses/by-nc/2.5/legalcode


040

400

004

030

022 003

202

300

220

111
132

231
321

312

213
123

I X = hull(I + m(4,4,4)) X∨ = cohull(I∨)

Figure 6: I and I∨ are the permutahedron and forest ideals when n = 3. The complex X is the
(labelled) regular polytopal subdivision of the simplex promised by Proposition 5.16. Overlayed on
this figure is the dual complex X∨ (without its labelling). At right, X∨ is shown with its labelling,
which is Zn-shifted as per Theorem 5.8. Turn the picture over for the staircase of I∨.

pair (|X|, |∂X|) has the same faces as the pair
(
∂(v ∗ Y ), v

)
consisting of the boundary of the cone

over the permutahedron Y rel the apex of the cone. The cellular complex X∨ supporting the cohull

resolution of the forest ideal I∨ is therefore easy to describe. Let Y be the permutahedron in Rn

and Y ∨ its polar. Then X∨ is the cone over ∂Y ∨ from the barycenter of Y ∨. The vertices G∨ of

X∨, which are labelled by the generators of I∨, almost all correspond to the facets G′ of Y (whose

labellings are as above). Only the apex of the cone is an exception, corresponding instead to the

interior of Y . The case n = 3 is depicted in Figure 6; it should be noted that the equality Y = Y ∨

is only because Y is 2-dimensional, not some more general self-duality.

Now cohull(I∨) is a cellular resolution of I∨ = I∨ + maI+1, so we can dualize this cellular

resolution using Theorem 5.8 again. This yields a minimal relative cocellular resolution of I, which

is seen to be cellular and (coincidentally?) equal to hull(I). 2

Recall from Section 1 that an ideal is cogeneric if it is Alexander dual to a generic ideal. The

minimal resolution of such an ideal was introduced in [15], where it was dubbed the co-Scarf

resolution. The next theorem, along with the proof of Theorem 5.19 above, explains why the

construction in [15] involved a subcomplex of the boundary of the simple polytope dual to the

simplicial polytope of which the Scarf complex is a subcomplex. The theorem is a direct consequence

of Theorem 5.8, Example 5.14, and Proposition 5.20.

Theorem 5.23 Any cohull resolution of a cogeneric monomial ideal is minimal and cellular. 2

Remark 5.24 That the co-Scarf resolution is cellular as opposed to weakly cellular was assumed

in [4], Example 1.8 but overlooked in [15].
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Example 5.25 It is possible for the hull and cohull resolutions to coincide for a given ideal I. For

instance, this occurs if I = m; or if I is simultaneously generic and cogeneric (which turns out to

be pretty hard to accomplish!); or if I is the permutahedron ideal in 3 variables. Conjecturally, the

hull and cohull resolutions should coincide for permutahedron ideals of all dimensions. 2

Example 5.26 Of course, it is also possible for the hull and cohull resolutions to be very different.

For instance, the cohull resolution of the ideal I∨ from Examples 1.8 and 5.10 is the co-Scarf

resolution, which is cellular and supported on an octagon with only one maximal face (dualize the

picture in Figure 5). On the other hand, hull(I∨) is a triangulation of the same octagon. 2

Example 5.27 The canonical cohull resolution can differ from a noncanonical cohull resolution.

For instance, let I = 〈x3z, xyz, y3z, x3y3〉 and a = (3, 4, 1), so Ia = 〈xz, x3y2, xy4, y2z〉 and I∨ =

〈xz, x3y, xy3, yz〉. Since hull(I) is not minimal, we look elsewhere for the minimal resolution of

I. But hull(Ia + ma+1) is not minimal, and the failure of minimality occurs in such a way that

cohulla(I) is also not minimal. On the other hand, the offending nonminimal edge is not present in

hull(I∨+ maI+1), and this resolution is minimal. It follows that cohull(I) is minimal. Note how the

passage from Ia to (Ia)∨∨ = I∨ “tightens” the hull resolution of Ia to make the nonminimal edge

disappear in hull((Ia)∨∨), cf. the remark after Corollary 2.14.

The labelled complexes supporting these resolutions are all depicted in Figure 7, where the

resolutions with black vertices are drawn “upside down” to make their superimposition on the

staircase diagram for I easier to visualize. Observe that a staircase diagram for I can be obtained

by turning over the staircase diagram for either Ia or I∨, although these result in different “bounding

boxes” for I. Note that all of the complexes, particularly the cohull complexes, are labelled and

not just weakly labelled. 2

Example 5.28 Finally, an example to illustrate that not all cellular resolutions come directly from

hull and cohull resolutions, so that the algebraic techniques to prove exactness in Section 6 prove a

stronger duality for resolutions than a geometric treatment such as that in [4] or [15] could provide.

All of the labelled cellular complexes from this example are depicted in Figure 8.

Let I = 〈z2, x3z, x4, y3, y2z, xyz〉, so that I∨ = 〈xyz2, x2y3z, x4y2z〉. Then hull(I) and cohull(I)

are not minimal (the offending cells have italic labels); moreover, cohulla(I) = cohull(I) for all

a � aI = (4, 3, 2). Nonetheless, the minimal resolution FX of I∨+m(5,4,3) is cellular, so Theorem 5.8

applies, yielding a minimal relative cocellular resolution F (X,XU )[−(5, 4, 3)](−2) for I. In fact, this

relative cocellular resolution is cellular, supported on the labelled cell complex Y . 2

6 Deformations and limits of resolutions

The final item on the agenda is the proof of Theorem 5.8. To that end, the goal of this section is

Theorem 6.11, which is actually a little more general than Theorem 5.8. It can be viewed as the
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result of applying a limiting process to a collection of pairs of linked artinian monomial ideals that

are deformations of a given pair. The entire section is a setup to apply a limit to Proposition 3.11,

and is another manifestation of the kinship of Alexander duality and other types of duality for

Gorenstein rings. The maps fb in the following definition accomplish the deformations.

Definition 6.1 Define the map fb: Zn → Zn for b � 0 by the coordinatewise formula

fb(c)i =

{
ci − bi if ci ≤ 0
ci if ci ≥ 1

To avoid messy exponents we also let fb(xc) = xfb(c). Whenever the symbol fb is written, it will be

assumed that b � 0.

Proposition 6.2 If I ⊆ S is any monomial ideal then 〈fb(I)〉 = S[b] ∩ Ĩ.

Proof: It is clear from the definition that fb(c) � −b if c � 0, whence 〈fb(I)〉 ⊆ S[b]. Since

also fb(c)+ = fb(c+), we conclude that 〈fb(I)〉 ⊆ Ĩ as well. For the reverse inclusion, assume

xc ∈ S[b] ∩ Ĩ. Then fb(xc+
) ∈ fb(I) and divides xc because fb(c+) � c whenever c � −b, a fact

which is easily seen from the definition. 2

Recall from Section 5 that the join of c, c′ ∈ Zn is the componentwise maximum.

Lemma 6.3 The map fb preserves joins; that is, fb(c ∨ c′) = fb(c) ∨ fb(c′). 2

This lemma is important because of the next proposition, originally due to D. Bayer. Let X be

a labelled cell complex, and suppose f : Zn → Zn is a map respecting joins. Denote by f(X) the

labelled cell complex which is obtained by applying f to the labels on the faces of X. Thus G ∈ f(X)

is labelled by f(aG) whenever G ∈ X is labelled by aG.

Proposition 6.4 Let FX be a cellular resolution of a finitely generated module M ⊆ T . If f : Zn →
Zn preserves joins then Ff(X) is a resolution of 〈f(M)〉.

Proof: Note that because f respects joins the effect of f is determined by its effect on the vertex

labels. Similarly, 〈f(M)〉 = 〈f(xb) | b is a vertex label of X〉. Thus one only needs to check that

Ff(X) is acyclic. It suffices to check that XB(b) is acyclic for all b ∈ Zn, by the acyclicity criterion

of [4], Proposition 1.2.

Suppose, then, that α is a cycle of the reduced chain complex of |f(X)B(b)|. Then α also

represents a cycle of |X|. Let c be the join of the labels on the faces in the support of α, considered

as faces of X. Since f preserves joins, f(c) � b and |XB(c)| ⊆ |f(X)B(b)|. Now α is a boundary

in the reduced chain complex of |XB(c)| by [4], Proposition 1.2, and it follows that α is also a

boundary in the reduced chain complex of |XB(b)|, completing the proof. 2

E. Miller Alexander Duality for Monomial Ideals and their Resolutions

Rejecta Mathematica Vol. 1, No. 1, July 2009

This work is published under the Creative Commons Attribution-NonCommercial License. http://creativecommons.org/licenses/by-nc/2.5/legalcode

53

http://math.rejecta.org
http://creativecommons.org/licenses/by-nc/2.5/legalcode


Corollary 6.5 If FX is a cellular resolution of I then Ffb(X) is a cellular resolution of S[b]∩ Ĩ. 2

Keeping the notation of the corollary we can augment Ffb(X) to a resolution of S[b]/S[b] ∩ Ĩ,

homologically shifted down 1, by adding a summand S[b] in homological degree −1. We denote this

augmented resolution by Fb(X), and we let Fb(X) := Fb(X)∗, with differential δb. The generator

of the summand S[−fb(aF )] ⊆ Fb(X) corresponding to the face F will be denoted by Fb, while the

generator of S[fb(aF )] = S[−fb(aF )]∗ ⊆ Fb(X) will be denoted by Fb. Keep in mind that Fb is

in Zn-graded degree −fb(aF ).

We will soon be defining maps between the Fb(X) for various b, and the following lemma,

particularly part (ii), will be the tool used to prove that these maps are well-defined, commute with

the differentials, and form an inverse system.

Lemma 6.6 If b � b′ � 0 then

(i) fb = fb−b′ ◦ fb′ ,
(ii) fb′(c)− fb(c) = c− fb−b′(c) .

Proof: Plug and chug, using the equality fb(c)+ = c+ for (i). 2

Lemma 6.7 For every b � b′ � 0 we have an injection of chain complexes ϕb,b′ : Fb(X) ↪→ Fb′(X)

sending Fb to
mF

fb−b′(mF )
Fb′.

Proof: There are two aspects to the proof: (i) the given map is an injection of homologically graded

modules which (as a map of Zn-graded modules) has degree 0, and (ii) the injections commute with

the differentials. The first follows from the equality −fb(aF ) = −fb′(aF ) + aF − fb−b′(aF ) which

is easily seen to be equivalent to Lemma 6.6(ii) when c = aF . The second is a longer calculation

directly from the definition of the differentials δb and δb′ of the chain complexes Fb and Fb′ .

The definitions imply that δb is just the transpose of the differential from the cellular free complex

as defined in [4]. Thus, δb(Fb) =
∑

G∈X ε(G,F )fb(mG)
fb(mF )

Gb, where ε is the incidence function defining

the differential of X. Note that ε(G,F ) is nonzero only if G ⊇ F . We have

δb′ ◦ ϕb,b′(F
b) =

∑
G∈X

ε(G,F )
fb′(mG)

fb′(mF )
· mF

fb−b′(mF )
Gb′

=
∑
G∈X

ε(G,F )
mG

fb−b′(mG)
· fb(mG)

fb(mF )
Gb′

= ϕb,b′ ◦ δb(Fb),

where the transition from the first line to the second is accomplished by two applications of

Lemma 6.6(ii). 2
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Lemma 6.8 If b � b′ � b′′ � 0 then ϕb,b′′ = ϕb′,b′′ ◦ϕb,b′ .

Proof: We need only check the equality as maps of modules. The proof again uses property (ii)

from Lemma 6.6, and it involves manipulations similar to those in the proof of Lemma 6.7. 2

These lemmata show that we have an inverse system of complexes of free modules, so it is

natural now to take the inverse limit. With F t(X) := F t·1(X) we can simplify a little since the

inverse systems {Fb(X)}b�0 and {F t(X)}t∈N are cofinal, so that their limits are the same. We take

this opportunity to note that our inverse limits, when taken in the category of Zn-graded objects

and degree zero maps, will be denoted by ∗lim
←−

, and that S is complete in this category. Recall

that, for our inverse system {F t(X)}t∈N of chain complexes, for instance, this is defined as

∗lim
←−
t

F t(X) =
⊕
c∈Zn

lim
←−
t

F t(X)c ,

where the inverse limits on the right are in the category of chain complexes of k-vector spaces.

At each stage in the inverse system, fb moves the labels on XU away from the first orthant,

in negative directions, turning any zeros into arbitrarily large negative integers (hence the name

“negatively unbounded” for the subcomplex XU of X). Then S-duality makes the negative integers

positive. Thus the maps fb, combined as they are with S-duality in the definition of Fb, create

irreducible components of Ia from those generators of I which do not have full support by pushing

the zeros out to (positive) infinity. In the limit, the vertices defining those generators disappear.

This provides the intuition for the next result.

Theorem 6.9 F (X,XU ) = ∗lim
←− t F t(X).

Proof: The first observations are that F (X,XU ) is a subcomplex of F t for all t, and that the maps

ϕt , t′ := ϕt·1 , t′·1 defining the inverse system restrict to the identity on F (X,XU ). This is because of

the way ft := ft·1 is defined:

ft−t ′(mF ) = mF ⇐⇒ t = t ′ or F 6∈ XU(5)

because fb(c)i = ci for all i precisely when c � 1. Thus we have, for all t ≥ 0, exact sequences

0 → F (X,XU ) → F t(X) → F t(XU) → 0(6)

giving rise to a corresponding exact sequence of inverse systems. To be more precise, the maps

{ϕt , t ′} from the inverse system {F t(X)}t∈N induce maps {ψt , t ′ : F t(XU) → F t ′(XU)}t≥t ′ which

make {F t(XU)}t∈N into an inverse system.

It is readily seen that the maps ψt , t ′ are injections, so that ∗lim
←− t F t(XU) =

⋂
t
ψt , 0

(
F t(XU)

)
.

Furthermore, statement (5) implies that ψt , t ′
(
F t(XU)

)
⊆ mF t ′(XU) if t > t ′. It follows from the
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Krull intersection theorem that the inverse limit is zero. Since the inverse limit is always left exact

our exact sequence of inverse systems arising from (6) yields the desired isomorphism. 2

So we can write F (X,XU ) as an inverse limit. What have we gained? In the category of Zn-

graded objects in which each graded piece has finite dimension over k (e.g. if the objects are chain

complexes which are finitely generated as S-modules), the functor ∗lim
←−

is exact, at least in the

case where the inverse systems are indexed by N—see [18], Exercise 3.5.2. With this in mind the

following corollary is a simple consequence of [18], Theorem 3.5.8.

Corollary 6.10 To compute homology we have Hi(F (X,XU )) = ∗lim
←− tHi(F t(X)). 2

Until this point in this section, the labelled cell complex X has been arbitrary. Now, however,

we suppose that X supports a cellular free resolution of the ideal I + ma+1, with a � aI . We will

see shortly that for any t the only nonvanishing homology of F t(X) is in homological degree 1− n,

so the previous corollary implies that the same holds for F (X,XU ). Now FX has length at least n− 1

(i.e. dimX ≥ n − 1) because it gives a free resolution of an artinian ideal; if we are so lucky that

FX has length exactly n− 1, then the summand of F (X,XU ) in homological degree 1− n will be the

last nonzero term. In other words, F (X,XU ) will be a free resolution of some S-module. This is what

makes Theorem 5.8 a special case of the next result. Even if we aren’t so lucky with the length of

FX , at least it will be split exact in homological degrees > n − 1 (so that F (X,XU ) is split exact in

homological degrees < 1− n), and we can still determine what the nonzero homology module is:

Theorem 6.11 Under the above conditions, Hi(F (X,XU )) = 0 if i 6= 1 − n, and H1−n(F (X,XU )) =

I [a][a + 1].

Proof: Let J = I+ma+1. For any b � 0 Corollary 6.5 implies that Fb(X) is a free resolution of the

module S[b]/ S[b]∩J̃ , homologically shifted down by 1. Thus Fb(X), which is the S-dual of Fb(X),

is a complex whose homology in degree i− 1 is Ext iS

(
S[b]/ S[b]∩J̃ , S

)
. Now S[b]/ S[b]∩J̃ ⊆ T/J̃

is artinian since J = I + ma+1 is, and it is noetherian because S[b] is. Hence the Ext module in

question is, by [5], Theorem 3.3.10(c), nonzero only for i = n. Moreover, Proposition 3.11 produces

the equality

ExtnS

(
S[b]/ S[b]∩J̃ , S

)
=
(
I / I∩ma+b+1

)
[a + 1].

Taking the ∗lim
←− b of this last line and applying Corollary 6.10 along with the completeness of S

proves the theorem. 2
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