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I wrote this paper in 2006, and submitted it to a journal specializing in integral equations and
operator theory. After circa 14 months I received a report which I reproduce in full here (I allow
myself to correct the spelling of a mathematician’s name cited in the report):

“In spite of desperate efforts, the referee has failed to understand what the paper is about.
Apparently it does not have a definite goal but consists of miscellaneous remarks to the papers by
de Branges and Rovnyak. It is practically impossible to distinguish original results in this jumble.
Actually, the text does not look as a mathematical article but rather as some notes for personal use.
In the referee’s opinion, the paper should be rewritten according to conventional rules and its volume
should be divided by the factor 5-10. The author should try to formulate the results which he
considers to be new.”

Let me explain why I consider the publication of the paper important. First of all the referee’s
report only serves to demonstrate that the referee did not read the manuscript. I tried to point
this out to the editor in chief, to no avail:

“ Dear Professor Burnol,
I read all your letters to us. I am not changing my mind! Your paper is not accepted for publication.
This decision is final and the discussions about this paper this time I consider finished. Sincerely,
XX ”

I think this illustrates nicely how dysfunctional the peer-review process may be, at times.
Regarding the paper itself, it is well structured, and its goal was to prove new mathematical
theorems (1), a goal which was achieved (!). T corrected a typo in 2008 (there was a superfluous
imaginary 4 in some equations, see the footnote on page 1), this is the only change to the 2006
version.

The referee asked me to divide the “volume” by between five and ten, a request which at that
time particularly infuriated me. In fact, a more acceptable comment would have been to point out
that the paper contained material for between 3 and 5 reasonably sized quasi-independent publi-
cations (of reasonable, but obviously not earth-shaking interest!), but I wanted to make a common
exposition with in particular a common introduction. What would be the point of repeating 5
times the same introduction? An introduction is made necessary by the fact that my perspective
is unique and links together a priori disjoint topics, the reader needs some help in entering this
framework.

Another difficulty is that in 2008, during a stay at Institut des Hautes Etudes Scientifiques
(IHES), I made very significant advances (establishing links with domains apparently completely
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unrelated, and which moreover have been of great interest for the last thirty years to large commu-
nities of researchers), on which I have had opportunities to give lectures at IHES, at the European
Conference of Mathematics (ECM) at Amsterdam, and at a workshop at the Independent Uni-
versity of Moscow (Conference Zeta functions IT). I have circulated a hand-written manuscript of
about 80 pages, and prior to publishing this novel material in peer-reviewed journals, I need to
make my earlier work available to the mathematical community.

I did sufficiently serious and dedicated work on this in 2006 resulting in a paper of about 65
pages. It would be all too easy, and far more beneficial to my career, to instead divide the paper
into at least 3 publications, but I just don’t see the point. If one is not sufficiently committed to
mathematics to place great importance on the form one gives to one’s own contributions, if one is
ready to obey arbitrary diktats, if all that matters is adding lines of publications to a CV, then
one practices a job and not a passion and one does not care about his/her legacy, one lives amidst
superficial illusions and pleasures.

This paper will be necessary reading to get a full understanding of my earlier as well as of my
future works.
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Scattering, determinants, hyperfunctions in relation to —Fr(s)

Jean-Frangois Burnol*

Abstract

The method of realizing certain self-reciprocal transforms as (absolute) scattering, previously
presented in summarized form in the case of the Fourier cosine and sine transforms, is here ap-
plied to the self-reciprocal transform f(y) — H(f)(z) = [;° Jo(2,/Zy) f(y) dy, which is isometri-
cally equivalent to the Hankel transform of order zero and is related to the functional equations
of the Dedekind zeta functions of imaginary quadratic fields. This also allows to re-prove and
to extend theorems of de Branges and V. Rovnyak regarding square integrable functions which
are self-or-skew reciprocal under the Hankel transform of order zero. Related integral formu-
lae involving various Bessel functions are all established internally to the method. Fredholm
determinants of the kernel Jo(2,/Zy) restricted to finite intervals (0,a) give the coefficients of
first and second order differential equations whose associated scattering is (isometrically) the
self-reciprocal transform H, closely related to the function % Remarkable distributions
involved in this analysis are seen to have most natural expressions as (difference of) boundary
values (i.e. hyperfunctions.) The present work is completely independent from the previous
study by the author on the same transform H, which centered around the Klein-Gordon equa-
tion and relativistic causality. In an appendix, we make a simple-minded observation regarding
the resolvent of the Dirichlet kernel as a Hilbert space reproducing kernel.

Introduction (The idea of co-Poisson)

We explain the underlying framework and the general contours of this work. Throughout the paper,
we have tried to formulate the theorems in such a form that one can, for most of them, read their
statements without having studied the preceeding material in its entirety, so a sufficiently clear
idea of the results and methods is easily accessible. Setting up here all notations and necessary
preliminaries for stating the results would have taken up too much space.

The Riemann zeta function ((s) = {5 + 3 + 35 + ... is a meromorphic function in the entire
complex plane with a simple pole at s = 1, residue 1. Its functional equation is usually written in
one of the following two forms:

(1a)

(1b)

The former is related to the expression of W*%F(g)((s) as a left Mellin transform! and to the Jacobi

*E-mail: burnol@math.univ-lillel.fr, Address: Université Lille 1, UFR de Mathématiques, Cité scientifique M2,
F-59655 Villeneuve d’Ascq, France
Yin the left Mellin transform we use s — 1, in the right Mellin transform we use —s.
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identity:
_s..,8 1 [ s_q
PTG = 5 [ (00— e (R(s)>1)  (2a)
0
= 1/Oo(e(t) 1oyt (0<R(s)<1)  (2b)
=3/ 7
1 1
=142 ¢* e 9(t) = —0(= 2
(t) ;q g=e (t) 7 (3) (2¢)

The latter form of the functional equation is related to the expression of {(s) as the right Mellin
transform of a tempered distribution with support in [0, 4+00), which is self-reciprocal under the
Fourier cosine transform:?

/ Z Om dx (3a)

m>1

/0 - 2cos(2mzy) (D 0n(y) — 1) dy =D dm(z) =1  (x>0) (3b)

n>1 m>1
This last identity may be written in the more familiar form:
/ Zﬂzzyzé- dy—z5 (4)
nez mez

which expresses the invariance of the “Dirac comb” distribution ), dm(z) under the Fourier
transform. As a linear functional on Schwartz functions ¢ , the invariance of ) m(z) under
Fourier is expressed as the Poisson summation formula:

S dm) =3 o(m) oy) = / T () da (5)

nez meZ

meZ

The Jacobi identity is the special instance with ¢(x) = exp(—mtz?), and conversely the validity of
(5) for Schwartz functions (and more) may be seen as a corollary to the Jacobi identity.

The idea of co-Poisson [4] leads to another formulation of the functional equation as an identity
involving functions. The co-Poisson identity ((10) below) appeared in the work of Duffin and
Weinberger [13]. In one of the approacheb to this identity, we start with a function g on the
positive half-line such that both fo t)dt and fo t 1 dt are absolutely convergent. Then we
consider the averaged distribution g x D :10) 19 4 where D(z) = > n>10n(2) = Loso(2).
This gives (for z > 0):

. x:“’g(x/n)_ * g(1/1)
9+ =3 ] /Otdt (6

If g is smooth with support in [a, A], 0 < a < A < 0o, then the co-Poisson sum g * D has Schwartz
decrease at +oo (easy from applying the Poisson formula to M, of. [8, 4.29] for a general

statement). The right Mellin transform g/*T)(s) is related to the right Mellin transform g(s) of g
via the identity:

7D0s) = [lgx D)@ do =) [ gl)ado = (5130 7)
2of course, dm(z) = 6(z —m).
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This is because the right Mellin transform of a multiplicative convolution is the product of the
right Mellin transforms. The necessary calculus of tempered distributions needed for this and
other statements in this paragraph is detailed in [8]. The functional equation in the form of (1b)

gives:3
7 D(s) = xo()C(1 — () = xo()@) 7 DO —5)  1(g)(t) = LD ¥

One may reinterpret this in a manner involving the cosine transform C acting on L?(0, 4-00; dx).
The Mellin transform of a function f(z) in L?(0, 00;dx) is a function f(s) on R(s ) = £ which is

nothing else than the Plancherel Fourier transform of e3" fe “) + ’L’)/ fo %_” dr =

[ fleeze ™™ du, [°|f(x)Pde = [ |f(e")ez|?du = f% s)|? |ds\ The unitary
operator CI is scale invariant hence it is diagonalized by the Mellin transform: C/Im (s) = Xo(s)f(s),

C(f)(s) = xo(s)f (1 — s), where xo(s) is obtained for example using f(z) = =™ and coincides
with the chi-function defined in (1b). It has modulus 1 on the critical line as C is unitary. So (8)

says that the co-Poisson intertwining identity holds:
Clg* D) =1I(g)* D 9)

The co-Poisson intertwining (9) or explicitely:

& > g(z/m > g(l/t > g(n o
/()QCOS(Qme)(Zg(m/)—/O g(t/)dt>dx:;g(y/y)—/o g(t)dt (y >0) (10)

m=1

is, when g is smooth with support in [a, A], 0 < a < A < oo, an identity of (even) Schwartz
functions. If g is only supposed to be such that [ [g(¢)[(1 + %)dt < oo then the co-Poisson
intertwining C(g * D) = I(g) * D holds as an identity of distributions (either considered even or
with support in [0,00)). Sufficient conditions for pointwise validity have been established [8]. The
general statement of the intertwining is C(g *x E) = I(g) * C(E) where E is an arbitrary tempered
distribution with support on [0, c0) (see footnote?) and it is proven directly. The co-Poisson identity
(10) is another manner, not identical with the Poisson summation formula, to express the invariance
of D under the cosine transform, or the invariance of the Dirac comb under the Fourier transform.

If the integrable function g has its support in [a, A], 0 < a < A < oo, then g * D is constant in
(0,a) and its cosine transform (thanks to the co-Poisson intertwining) is constant in (0, A~1). Up to
a rescaling we may take A = a~!, and then a < 1 (if a non zero example is wanted.) Appropriate
modifications allow to construct non zero even Schwartz functions constant in (—a,a) and with
Fourier transform again constant in (—a, a) where a > 0 is arbitrary [8].

Schwartz functions are square-integrable so here we have made contact with the investigation
of de Branges [1], V Rovnyak [28] and J. and V. Rovnyak [29, 30] of square integrable functions on
(0, 00) vanishing on (0,a) and with Hankel transform of order v vanishing on (0,a). For v = —3

the Hankel transform of order v is f(y) — \/gfooo cos(zy) f(y) dy and up to a scale change this is
the cosine transform considered above. The co-Poisson idea allows to attach the zeta function to,
among the spaces defined by de Branges [1], the spaces associated with the cosine transform: it
has allowed the definition of some novel Hilbert spaces [3] of entire functions in relation with the
Riemann zeta function and Dirichlet L-functions (the co-Poisson idea is in [4] on the adeles of an

30one observes that I/(\g)(s) =g(1—s).
“both sides in fact depend only on F(z) + E(—z) as a distribution on the line, which may be identically 0, and
this happens exactly when FE is a linear combination of odd derivatives of the delta function.
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arbitrary algebraic number field K; then, the study of the related Hilbert spaces was begun for
K = Q. Further results were obtained in [7})

1-—s
The study of the function xo(s) = ™3 FIE( )) of unit modulus on the critical line, is interesting.

We proposed to realize the x( function as a scattermg matrix”. This is indeed possible and has
been achieved in [6]. The distributions, functions, and differential equations involved are all related
to, or expressed by, the Fredholm determinants of the finite cosine transform, which in turn are
related to the Fredholm determinants of the finite Dirichlet kernels S2Z=¥) o [—1,1]. The study

m(z—y)
of the Dirichlet kernels is a topic with a vast literature. A minor remark will be made in an
appendix.
We mentioned the Riemann zeta function and how it relates to xo(s) = T3 G e )) and to the

cosine transform. Let us now briefly consider the Dedekind zeta function of the Gaussmn number

field Q(7) and how it relates to x(s) = % and to the H transform. The H transform is

@) = [ eyl da hieyag) = 3 (il (11)
n=0 '

Up to the unitary transformation g(z) = (Qx)*%f(\/%), H(g)(y) = (2y)’ik;(\/@), it becomes
the Hankel transform of order zero k(y) = fooo VZyJo(xy) f(x) dx. It is a self-reciprocal, unitary,
scale reversing operator (H(g(Az))(y) = +H(g)(%)). We shall also extend its action to tempered
distributions on R with support in [0, +00). At the level of right Mellin transforms of elements of
L?(0, 00; dz) it acts as:

o)) =031 -9) () =T e = (12)

It has e~ *1,>0(x) as one among its self-reciprocal functions, as is verified directly by series expansion
IS Jo2y/@y)e v dy =307, (:l,lz)n a™ [Fy"e Y dy = e”*. The identity

o0 I(1-ys)

Jo(2Vt) T4 dt = =——> 13
| mevied= ) = S5 (13)
is equivalent to a special case of well-known formulas of Weber, Sonine and Schafheitlin [33,
13.24.(1)]. Here we have an absolutely convergent integral for % < R(s) < 1 and in that range
the identity may be proven as in: e™® = [° Jo(2\/zy)e Vdy = [;° Jo(2\/¥)% e rdy, T(1—s) =
IS Jo2ym) (fy° e te"z dx)dy = I(s () fo~ Jo(2y/y)y—* dy. The integral is semi-convergent for
%(s) > 1, and of course (13) still holds. In particular on the critical line and writing ¢t = e*
s5=35 L4 i’y, we obtain the identities of tempered distributions [ e%“JO(Qe%”)e’”“ du = X(% + i’y),
62“J0 2e3") = =5 fR +Z’y et du.

WehaveCQ () 4Z(nm 00 W:%-ﬂ-%ﬁ-%-f—%-ﬂ-%ﬁ-:anl%andltls
a meromorphic functlon in the entlre complex plane with a simple pole at s = 1, residue 7. Its
functional equation assumes at least two convenient well-known forms:

(V) (2m) T($)o(s) = (VD) (2m) 0-ID(1 = 5)Ggqu (1 ) (142)
()G (s) = X)) a1 =) () =5 (14b)
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')
The former is related to the expression of 77°I'(s)(g(;)(s) as a left Mellin transform:
7 °T(s)Coe)(s) = 3/000(0(16)2 — 1)ttt (R(s) > 1) (15a)
= 3/000(6’(15)2 -1- %)t“”‘1 dt (0<R(s) < 1) (15Db)
00 = 50,V (150

The latter form of the functional equation is related to the expression of (%)SCQ@)(S) as the right
Mellin transform of a tempered distribution which is supported in [0, c0) and which is self-reciprocal
under the H-transform:

1 S L (s) = * c T _1 x Sdx a

(3o = [ (3 cntonte) = " (16a)

| 0 b))y = 3 endon(e) = Jlesalo) = EG@) (2>0) (100
n>1 m2>1

The invariance of E under the H-transform is equivalent to the validity of the functional equation
of (%)"”CQ@)(S) and it having a pole with residue i at s = 1. The co-Poisson intertwining becomes
the assertion:

v>0 = [ niev) (Zcmgwm) -1 e Cff) L
m=1 n=1

™m

(17)
If g is smooth with support in [b,B], 0 < b < B < oo, then we have on the right hand side
a function of Schwartz decrease at +oo (compare to Theorem 3), and its H-transform is also of
Schwartz decrease at +o0o. The former is constant for 0 < y < #B~! and the latter is constant for
0 < x < wb. The supremum of the values obtainable for the product of the lengths of the intervals
of constancy is w2. But, as for the cosine and sine transforms, there does exist smooth functions
which are constant on a given (0,a) for arbitrary a > 0 with an H transform again constant on
(0,a) and have Schwartz decrease at +oo (the two constants being arbitrarily prescribed.)

De Branges and V. Rovnyak have obtained [1, 28] rather complete results in the study of
the Hankel transform of order zero f(z) — g(y) = [;° /ZyJo(zy)f(x)dz from the point of view
of understanding the support property of being zero and with transform again zero in a given
interval (0,b). They obtained an isometric expansion (Theorem 1 of section 2) and also the detailed
description of the related spaces of entire functions ([1]). The more complicated case of the Hankel
transforms of non-zero integer orders was treated by J. and V. Rovnyak [29, 30]. These, rather
complete, results are an indication that the Hankel transform of order zero or of integer order is
easier to understand than the cosine or sine transforms, and that doing so thoroughly could be
useful to better understand how to try to understand the cosine and sine transforms.

The kernel Jy(2y/uv) of the H-transform satisfies the Klein-Gordon equation in the variables
rT=v—Uu,t=0+u

(af;v +DD(2vuw) = (O + D Jo(2vuv) = (5?22 B 86722 +)o(VE—af) =0 (18)

It is a noteworthy fact that the support condition, initially considered by de Branges and V. Rovnyak,
and which, nowadays, is also seen to be in relation with the co-Poisson identities, has turned out to
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be related to the relativistic causality governing the propagation of solutions to the Klein-Gordon
equation. This has been established in [9] where we obtained as an application of this idea the
isometric expansion of [1, 28] in a novel manner. It was furthermore proven in [9] that the H
transform is indeed an (absolute) scattering, in fact the scattering from the past boundary to the
future boundary of the Rindler wedge 0 < |t| < « for solutions of a first order, two-component
(“Dirac”), form of the KG equation.

In the present paper, which is completely independent from [9], we shall again study the #-
transform and show in particular how to recover in yet a different way the earlier results of [1, 28]
and also we shall extend them. This will be based on the methods from [5, 6], and uses the
techniques motivated by the study of the co-Poisson idea [8]. Our exposition will thus give a fully
detailed account of the material available in summarized form in [5, 6]. Then we proceed with a
development of these methods to provide the elucidation of the (two dimensions bigger) spaces of
functions constant in (0,a) and with #H-transforms constant in (0, a).

The use of tempered distributions is an important point of our approach®; also one may envision
the co-Poisson idea as asking not to completely identify a distribution with the linear functional
it “is”. In this regard it is of note that the distributions which arise following the method of [5]
are seen in the present case of the study of the H-transform to have a very natural formulation as
differences of boundary values of analytic functions, that is, as hyperfunctions [23]. We do not use
the theory of hyperfunctions as such, but could not see how not to mention that this is what these
distributions seem to be in a natural manner.

The paper contains no number theory. And, the reader will need no prior knowledge of [2];
some familiarity with the m-function of Hermann Weyl [10, 21, 26] is necessary at one stage of
the discussion (there is much common ground, in fact, between the properties of the m-function
and the axioms of [2]). The reproducing kernel in any space with the axioms of [2] has a specific
appearance (equation (109) below) which has been used as a guide to what we should be looking
for. The validity of the formula is re-proven in the specific instance considered here®. Regarding
the differential equations governing the deformation, with respect to the parameter a > 07, of the
Hilbert spaces, we depart from the general formalism of [2] and obtain them in a canonical form, as
defined in [21, §3]. Interestingly this is related to the fact that the A and B functions (connected
to the reproducing kernel, equation (109)) which are obtained by the method of [5] turn out not
to be normalized according to the rule in general use in [2]. Each rule of normalization has its
own advantages; here the equations are obtained in the Schrédinger and Dirac forms familiar from
the spectral theory of linear second order differential equations [10, 21, 26]. This allows to make
reference to the well-known Weyl-Stone-Titchmarsh-Kodaira theory [10, 21, 26], and to understand
‘H as a scattering. Regarding spaces with the axioms of [2], the articles of Dym [14] and Remling
[27] will be useful to the reader interested in second order linear differential equations. And we
refer the reader with number theoretical interests to the recent papers of Lagarias [18, 19].

The author has been confronted with a dilemma: a substantial portion of the paper (most of
chapters 5, 6, 8) has a general validity for operators having a kernel of the multiplicative type
k(zy) possessing certain properties in common with the cosine, sine or H transforms. But on the

®at the bottom of page 456 of [1] the formulas given for A(a,z) and B(a,z) as completed Mellin transforms are
lacking terms which would correspond to Dirac distributions; possibly related to this, the isometric expansion as
presented in Theorem II of [1] is lacking corresponding terms. The exact isometric expansion appears in [28] and the
exact formulas for A(a, z) and B(a, z) as completed Mellin transforms appear, in an equivalent form, in [30, eq.(37)].

Sthe critical line here plays the réle of the real axis in [2], s is 2+ — iz and the use of the variable s is most useful
in distinguishing the right Mellin transforms which need to be completed by a Gamma factor from the left Mellin
transforms of “theta”-like functions.

"the a here corresponds to 1a” in [1].
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other hand the (essentially) unique example where all quantities arising may be computed is the
H transform (and transforms derived from it, or closely related to it, as the Hankel transforms of
integer orders). We have tried to give proofs whose generality is obvious, but we also made full use
of distributions, as this allows to give to the quantities arising very natural expressions. Also we
never hesitate using arguments of analyticity although for some topics (for example, some aspects
involving certain integral equations and Fredholm determinants) this is certainly not really needed.

2 Hardy spaces and the de Branges-Rovnyak isometric expansion

Let us state the isometric expansion of [1, 28] regarding the square integrable Hankel transforms
of order zero. We reformulate the theorem to express it with the H transform (11) rather than the
Hankel transform of order zero.

Theorem 1 ([1], [28]). : Let k € L?(0,00;dz). The functions fi and g1, defined as the following
integrals:

fily) = / " ho@Vy(E — )k(z) da (19a)

) = k) - [ h

exist in L? in the sense of mean-square convergence, and they verify:

/ TP+ o)y = / k()P da (19¢)
0 0

The function k is given in terms of the pair (f1,¢1) as:

k<x>=g1<x>+/0 Jo@v/y@ — ) f1(y) dy - /

(/5o = )h(z) da (190)

J1 2vy(x —y))g1(y) dy (19d)

The assignment k — (f1, g1) is a unitary equivalence of L*(0, 0o; dx) with L?(0, oo; dy)®L?(0, 0o; dy)
such that the H-transform acts as (f1,91) — (g1, f1). Furthermore k and H(k) both identically
vanish in (0,a) if and only if f1 and g1 both identically vanish in (0,a).

Let us mention the following (which follows from the proof we have given of Thm. 1 in [9]):
if fi, fl, g1, gy are in L? then k, k' and H(k)' are in L?. Conversely if k, k' and H(k)' are in
L? then the integrals defining fi(y) and g1(y) are convergent for each y > 0 as improper Riemann
integrals, and f| and g are in L?.

It will prove convenient to work with (f(z),g(z)) = 3(g1(%) + f1(£), 51(%) — f1(%)):
1= 58+ g [ (i) - |G AR ke o
o) = 545~ 5 [ (/i) + [ A=) ) ke de ot

by =1+ [ (i) - [ n =) ) fwdy
vazn) -3 [ (a0 =)+ [ n G ) sy o)
/

/O Cl@Pdr= [ 1F@R + W) dy (20d)
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The H transform on k acts as (f,g) — (f,—g). The pair (k, H(k)) identically vanishes on (0, a)
if and only if the pair (f,g) identically vanishes on (0, 2a). The structure of the formulas is more
apparent after observing (z,y > 0):

(5 T~ ) ocyensl)) = doely) — 3 /5 (V5@ g locyenaly) (21

20 — vy

In this section I shall prove the existence of an isometric expansion k <> (f,g) having the stated
support properties and relation to the H-transform; that this construction does give the equations
(20a), (20b), (20c), will only be established in the last section (9) of the paper. The method followed
in this section coincides partly with the one of V. Rovnyak [28]; we try to produce the most direct
arguments, using the commonly known facts on Hardy spaces. The reader only interested in
Theorem 1 is invited after having read the present section to then jump directly to section 9 for
the conclusion of the proof.
To a function k € L?(0, 00; dx) we associate the analytic function

B0 = /0 T eNp)de (S > 0) (22)

with boundary values for A € R again written E()\), which defines an element of L?(R, %), the
assignment k +— k being unitary from L?(0,00;dz) onto H2(S(A > 0), %) Next we have the

conformal equivalence and its associated unitary map from H?(S(\ > 0), %) to H2(|w| < 1, %):

A—1 1 A+~
=3 KW =55k (23)

It is well known that this indeed unitarily identifies the two Hardy spaces. With ko(z) = e %,
ko(N) = /\%ﬂ., Ko(w) = %, and | kol|? = fooo e~y = % = ||Ko|?>. The functions k,(\) = (i—jr;)”/\iz

correspond to K, (w) = %w" To obtain explicitely the orthogonal basis (ky)n>0, we first observe

w

that w =1 — 2)\%_1., SO as a unitary operator it acts as:

w-k(x) =k(x) — 2/; eV k(y) dy = k(x) — e 2 /Ow eYk(y) dy (24)

Writing ky (2) = P,(x)e™" we thus obtain P,y1(z) = Py(z) — 2 5 Pa(y) dy:

Py(x) = <1 - 2/030)” 1= Zn: <?> (j?f)j (25)

=0

So as is well-known P, (x) = L%O)(Zx) (in the notation of [31, §5]) where the Laguerre polynomials

LY (z) are an orthonormal system for the weight e™*dz on (0, c0).
One of the most common manner to be led to the H-transform is to define it from the two-
dimensional Fourier transform as:

1 1 ; R <[ gy , 1
/H(f)(QTQ) _ % // ez(z1y1+a:2y2)f(%)dyldy2 :/0 (/0 ezrscosezﬂ-) f(582)8d8

(26)
1 & 1
MG = [ Rl fGsds 1= ot +ads® = i 03
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which proves its unitarity, self-adjointness, and self-reciprocal character and the fact that it has
e~ " has self-reciprocal function. The direct verification of H (ko) = ko is immediate: H(ko)(z) =
I Jo2y/@y)e v dy = > 07 (71!1:2n " [(Fyte Vdy = e . Then, H(e ™) = t~le~7 for each t > 0.

So [ e " H(k)(x)dx =t [° e~ t"k(x) da hence:

Wk € L2(0,00:dx)  HIF)(N) = %E(‘Tl) (27)

With the notation H(K) for the function in H?(Jw| < 1) corresponding to H(k), we obtain from
(23), (27), an extremely simple result:®

H(K)(w) = K(-w) (28)

This obviously leads us to associate to K(w) = > ;c,w™ the functions:

F(w) = Z copw” (29a)
n=>0

G(w) =Y conprw” (29b)
n=0

K(w) = F(w?) + wG(w?) (29¢)

and to k the functions f and g in L?(0,+o0;dx) corresponding to F and G. Certainly, |k[|? =
II£1I>+1lgl1%, and the assignment of (f,g) to k is an isometric identification. Furthermore, certainly
the H transform acts in this picture as (f,g) — (f, —g). Let us now check the support properties.
Let a(m) be the leftmost point of the (essential) support of a given m € L?(0,00;dx). As is
well-known,

1 ~ .
—a(m) = limsup - log |m(it)| , (30)
t—+oo b

2 1

If w corresponds to A via (23) then w? corresponds to 2(A — }), so if to a function f with corre-
sponding F(w) we associate the function 1 (f) € L?(0, 00; dx) which corresponds to F(w?),

__ trl

(t+ DEE1) = ( ik

L DT (1)

then we have the identity: .
a(¥(f)) = 5a(f) (32)

Returning to F' (resp. f) and G (resp. g) associated via (29a), (29b), to K (resp. k) we thus have
E=v(f)+w-¥(g), H(k) = ¥(f) —w-1¥(g), hence if the pair (f,g) vanishes on (0,2a) then the
pair (k,H(k)) vanishes on (0, a) (clearly the unitary operator of multiplication by w = ﬁ—j_; does not
affect a(m).) Conversely, as a(f) = 2a(k + H(k)) and a(g) = 2a(k — H(k)), if the pair (k, H(k))
vanishes on (0, a) then the pair (f,g) vanishes on (0, 2a).

We have thus established the existence of an isometric expansion, its support properties, and
its relation to the H-transform. That there is indeed compatibility of (20a) and (20b) with (29a)
and (29b), and with (20c), will be established in the last section (9) of the paper with a direct
study of (31). In the meantime equations (20a), (20b), (20c) and (20d) will have been confirmed
in another manner. Yet another proof of the isometric expansion has been given in [9].

8we also take note of the operator identity H - w = —w - H.
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3 Tempered distributions and their H and Mellin transforms

Any distribution D on R has a primitive. If the closed support of D is included in [0, 400), then
it has a unique primitive, which we will denote fox D(z) dx, or, more safely, D&Y which also has
its support in [0,+00). The temperedness of such a D is equivalent to the fact that DN for
N > 0 is a continuous function with polynomial growth. With DN (z) = (1 + )M gy an (),
M > 0, we can express D as P(x, dx)(g) where P is a polynomial and g € L?(0, 0o; dx). Conversely
any such expression is a tempered distribution vanishing in (—00,0). The Fourler transforms of
such tempered distributions D()\) appear thus as the boundary values of Q(-% oM f(A) where Q
are polynomials and the f’s belong to H?((A\) > 0). As taking primitives is allowed we know
without further ado that this class of analytic functions is the same thing as the space of functions
g(N\) = (ddw A AH f(A), R apolynomial and f € H2. Tt is thus clearly left stable by the operation:
i, —1

9+ Hg)N) = 9()

> (S(V) > 0) (33)

which will serve to define the action of 7 on tempered distributions with support in [0, +00).

Let us also use (33), where now A € R, to define H as a unitary operator on L?(—o0, +00; dz).
It will anti-commute with f(z) — f(—z) so:

H(f)(z) = /700 (Jo(2v/ZY) Laso(7)1y>0(y) — Jo(2/7y)1aco(z)1y<0(y)) f(y) dy (34)

Useful operator identities are easily established from (33):

d d d d
d X
d d d d

It is important that % is always taken in the distribution sense. It would actually be possible
to define the action of H on distributions supported in [0, +00) without mention of the Fourier
transform, because these identities uniquely determine #(D) if D is written (-2)N (14 z)M gy s (2)
with gy € L?(0,00;dz). But the proof needs some organizing then as it is necessary to check
independence from the choice of V and M, and also to establish afterwards all identities above. So
(33) provides the easiest road. Still, in this context, let us mention the following which relates to
the restriction of H(D) to (0, 400):

Lemma 2. Let k be smooth on R with compact support in [0,+00). Then H(k) is the restriction
to [0,400) of an entire function v which has Schwartz decrease as © — +o0o. For any tempered
distribution D with support in [0,+00), there holds

/00 H(D)(x)k(x)dx = /OO D(x)y(x)dx , (36)
0 0

where in the right hand side in fact one has [~ D(x)y(z)0(x) dz where the smooth function 0 is 1
for x > =5 and 0 for x < —§ and is otherwise arbitrary (as is €).
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Let us suppose k = 0 for z > B. Defining:

B
@) = [ D2y ) dy (37)
we obtain an entire function and, according to our definitions, ’H(k)( ) = v(x)1z>0(x) as a distribu-
tion or a square-integrable function. Using (35¢c) (H = —77-[ dx x dm for x > 0) and bounding Jy by
1 we see (induction) that v is O(z ™) for any N as z — 400 , and using (35a) (&£ -H = —1H. 4

for > 0) the same applies to its derivative and also to its higher derivatives. So it is of the
Schwartz class for  — 4-o00.

Replacing D by H(D) in (36) it will be more convenient to prove:

/OO D(z)k(z)dx = /00 H(D)(z)y(x) dx (38)
0 0

If (38) holds for D (and all k’s) then < D',k >= — < D, k' >= — < H(D z) [ ~(y)dy > (ob-
serve that [ v(y) dy = H(k')(x) vanishes at +-00) so < D/, E>=+< f() ) 97 >=<H(D),0y >
hence (38) holds as well for D’ (and all k’s). So we may assume D to be a continuous function of
polynomial growth. It is also checked using (35¢) that if (38) holds for D it holds for D. So we
may reduce to D being square-integrable, and the statement then follows from the self-adjointness
of H on L? (or we reduce to Fubini).

The behavior of H with respect to the translations 7, : f(z) — f(x — a) is important. For
f € L%(R; dx) the value of a is arbitrary and we can define

=N, H (39a)
Ta(F)N) = A F(N) (39b)
() = 97 F() (39¢)

We observe the remarkable commutation relations (which would fail for the cosine or sine trans-
forms):
Va,b 7}17}?E = TZ‘#TQ (40)

For a distribution D the action of 77 is here defined only for a > —a(H(D)), where a(E) is the
leftmost point of the closed support of the distribution E. On this topic from the validity of (30)
when f € L?(0,00;dr), and invariance of o under derivation®, integration, and multiplication by
x, one has:

—a(F) = hm sup log |E(it)] (41)
We thus have the property, not shared by the cosine or sine transforms:
a>—a(H(D)) = a(T (D)) =a(D) (42)

We now consider D with a(D) > 0 and a(H (D)) > 0 and prove that its Mellin transform is
an entire function with trivial zeros at 0, —1, —2, ..., following the method of regularization by
multiplicative convolution and co-Poisson intertwining from [8]. The other, very classical in spirit,
proof shall be presented later. The latter method is shorter but the former provides complementary
information.

°Tt is important in order to avoid a possible confusion to insist on the fact that % is always taken in the distribution
sense so for example %lmw = §(x) indeed has the leftmost point of its support not affected by d%.
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In [8, §4.A] the detailed explanations relative to the notion of multiplicative convolution are

given:
[43 ” T dt
9+ D)) * =" [ 90D(F) (13)
R 7t
where we will in fact always take g to have compact support in (0,4+00). It is observed that
gxaD=2(L«D) (¢+D) =2xD (44)
x x

The notion of right Mellin transform fooo D(z)x~*dx is developed in [8, §4.C], for D with support
in [a, +00), a > 0:

D(s)=s(s+1)---(s+ N —1)DN(s + N) (45)
where N > 0. The meaning of D is as the maximal possible analytic continuation to a half-plane
R(s) > o, where o is as to the left as is possible. The notion is extended!'® in [8, §4.F] to the case
where the restriction of D to (—a,a) is “quasi-homogeneous”. For example, if D|(7a Q) = lo<z<a
(resp. 0), then D is defined as 131 with D1 = D —1p<z<oo (resp. D —4.) Then, also in the extended

case, the following holds:

g+ D(s) = §(s)D(s) (46)

where ¢ in an integrable function with compact support in (0,00) and g(s) is the entire function
Jo~ g(t)t~5 dt. We then have the following theorem:

Theorem 3. Let D a tempered distribution with support in [a, +00), a > 0 and such that H(D)
also has a positive leftmost point of support. Let g be a smooth function with compact support in
(0,00). Then the multiplicative convolution g * D belongs to the Schwartz class.

This is the analog of [8, Thm 4.29]. The function k(t) = (Ig)(t) = M is defined and it is
written as k = H(ylz>0) where 7 is the entire function, of Schwartz decrease at +o0o such that
H(k) =7 - 1z50. Then it is observed that

k(z/t)

t

o0 o0
t>0 = (¢gxD)(t)= / D(x) de = / H(D)(z)y(tx) dx (47)
0 0
We have used Lemma 2. Then the Schwartz decrease of [ H(D)(z)y(tx)dx as t — +oo is
established as is done at the end of the proof of [8, Thm 4.29], integrating by parts enough times to
transform H (D) into a continuous function of polynomial growth, identically zero on [0, c], ¢ > 0.

Theorem 4. Let D a tempered distribution with a positive lefmost point of support and such that
H(D) also has a positive leftmost point of support. Then D(s) and T'(s)D(s) are entire functions
and:

I'(s)D(s) = T(1 — s)H(D)(1 — ) (48)
We first establish:

Theorem 5 (“co-Poisson intertwining”). Let D be a tempered distribution supported in [0, 400)

and let g be an integrable function with compact support in (0,00). Then, with (Ig)(t) = g(lt/t) :

H(g+ D) = (Ig) * H(D) (49)

10if D is near the origin a function with an analytic character, then straightforward elementary arguments allow a
complementary discussion. However if D is just an element of L2(07 oo; dr) then D is a square-integrable function on
the critical line, and nothing more nor less.
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Let us first suppose that D is an L? function. In that case, we will use the Mellin-Plancherel
transform f +— f fo t)t—* dt, for f square integrable and (s) = 5. Then .;k\f is, changing
variables, the Fourler transform of an additive convolution where one of the two has compact
support, well known to be the product g - f. We need also to understand the Mellin transform

of H(f). Let us suppose fi(z) = exp(—tx). Then H(f) = %fl has Mellin transform 77(f\t)(s) =
t
t=°T'(1 — s) and f;(s) = t*7'T'(1 — s), so we have the identity for such f’s:

HE) = S 7 -0 (50)

The linear combinations of the f;’s are dense in L?, so (49) holds for all f’s as an identity of
square. integrable functions on the critical line./\ﬂe are now/irix position to check the intertwining:
Hig* f)(s) = TH2a(1 = ) (1 = 5) = Tg(s)H()(s) = g« H(f)(s).

For the case of an arbitrary distribution it will then be sufficient to check that if (49) holds for
D it holds for D and for D'. This is easily done using (44). We have g * (D’) = (zg * D)’, so

H(g*D') = [, H(zg*D) = fox(% *H(D)) = Ig*(fy H(D)) = Ig+H(D'). A similar proof is done
for D. This completes the proof of the intertwining.

The theorem 4 is then established as is [8, Thm 4.30]. We pick an arbitrary g smooth with
compact support in (0,00). We know by theorem 3 that g * D is a Schwartz function as x — 400,

and certainly it vanishes identically in a neighborhood of the origin, so g*/\D(s) = §(s)ﬁ(s) is an
entire function. So f)(s) is a meromorphic function in the entire complex plane, in fact an entire
function as g is arbitrary. We then use the intertwining and (50) for square integrable functions.
This gives §(1—5)H(D)(s) = Ig * H(D)(s) = H(g * D)(s) = "8522G(1— 5)D(1~s). Hence, indeed,
after replacing s by 1 — s:

(s)D(s) = (1 — s)H(D)(1 — s) (51)
The left-hand side may have poles only at 0, —1, ..., and the right-hand side only at 1, 2, .... So

both sides are entire functions and D(s) has trivial zeros at 0, —1, —2, ...

We now give another proof of Theorem 4, which is more classical, as it is the descendant of
the second of Riemann’s proof, and is the familiar one from the theory of theory of L-series and
modular functions. The existence of two complementary proofs is instructive, as it helps to better
understand the role of the right Mellin transform [° f(x)z ™ da vs. the left Mellin transform
Jo7 0Git)ts—" dt.

To the distribution D we associate its “theta” function!* 8p(\) = D(\) = Jo° €D () dx,
which is an analytic function for F(A\) > 0 '2. Right from the beginning we have:

Onco(it) = 300() (52)

If the leftmost point of the support of D is positive then 6p(it) has exponential decrease as t — +oo
and floo Op(it)t*~1 dt is an entire function. If also the leftmost point of support of H (D) is positive
then 0y,(p)(it) has exponential decrease as t — +oo and fol Op(it)ts—tdt = floo 07.[ y(it)t =% dt is an
entire function. So, under the support property considered in Theorem 4 D(s fo Op(it)ts—Ldt
is indeed an entire function, and the functional equation is

D(s) =D* (1 —s) (53)

the author hopes to be forgiven this temporary terminology in a situation where only the behavior under A — _Tl
is at work.
2we adopt the usual notation, and consider #p as a function of it rather than ¢.
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with D*(s) = [;° Oy (p)(t)t*~ dt.
To conclude we also need to establish:

D(s) = T'(s)D(s) (54)

We shall prove this for R(s) > 0 under the hypothesis that D has support in [a,4+00), a > 0 (no
hypothesis on H(D)). In that case, as Op(it) is O(t~") for a certain N as t — 0 (t > 0), and is of
exponential decrease as t — +00, we can define D(s) = fooo Op(it)t>~1 dt as an analytic function for
R(s) > 0. Let us suppose that D is a continuous function which is O(z~2) as  — +o00. Then, for,
R(s) > 0, the identity (54) holds as an application of the Fubini theorem. We then apply our usual
method to check that if (54) holds for D it also holds for D and for D’. For this, obviously we
need things such as b\’(s) = sD(s+1) [8, 4.15] and x/b(s) = D(s — 1), the formulas 6 = —iXp,
0.p = 77;%9D, and I'(s + 1) = sT'(s). The verifications are then straightforward.

In summary we have seen how the support property for D and H (D) is related in two comple-
mentary manners to the functional equation, one using the right Mellin transform D(s) of D and
the idea of co-Poisson, the other using the left Mellin transform D(s) of the “theta” function 6p
associated to D as an analytic function on the upper half-plane and the behavior of p(it) under
t— % It is possible to push further the analysis and to characterize the class of entire functions

~

D(s) = I'(s)D(s), as has been done in [8] in the case of the cosine and sine transforms. It is also
explained in [8] how the discussion extends to allow finitely many poles. The proofs and statements
given there are easily adapted to the case of the H transform. Only the case of poles at 1 and 0
will be needed here and this corresponds, either to the condition that D and H (D) both restrict in
(—a,a) for some a > 0 to multiples of the Dirac delta function, or, that they are both constant in
[0,a) for some a > 0. We recall that the Mellin transform D(s) is defined in such a manner, that
it is not affected from either substracting ¢ or 1,~¢ from D.

4 A group of distributions and related integral formulas

We now derive some integral identities which will prove central. The identities will be re-obtained
later as the outcome of a less direct path. We are interested in the tempered distribution g,(x)
whose Fourier transform is exp(ia=). Indeed 77 (f) (equation (39a)) is the additive convolution of
f with g,: we note that g, differs from §(x) by a square integrable function as 1 — exp(—iaA™!) =
O|M_,OO(|)\|_1); so there is a convolution formula Tf(f) = f — fax [ for a certain square integrable
function f,. For f € L?, the convolution f, * f as the Fourier transform of an L'-function is
continuous on R. Starting from the identity exp(ia_Tl) = fi)\ﬁ exp(ia_Tl) we identify g, for a > 0
as %Héa. It is important that % is taken in the distribution sense. So we have, simply:
a1 (2y/a7)

ga(x) = 6(x) — Wk»o(m) (a>0) (55)

If a <0 then ga(x) = gfa(fw% fa(x) = ffa(fw)’ So:

aJi(2v/—azx
-ale) =8(0) - PO @) (a0 (56)
The group property under the additive convolution g, * g = gg+p» leads to remarkable integral
identities fy1p = fo+ fo — fo* fo involving the Bessel functions. The pointwise validity is guaranteed

by continuity; the Plancherel identity confirms the identity, where f,(z) = %\/{mlzw(x) for
a>0and f4(z) = fo(—2):
fa+b:fa+fb_fa*fb (57)
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At x = 0 the pointwise identity is obtained by continuity from either z > 0 or x < 0. We have
essentially two cases: g, * gp for a,b > 0 and g, * g_p for a > b > 0. The following is obtained:

Proposition 6. Leta > b >0 and x > 0. There holds:

(@ BACY@ D) _ ah@yam) | bhEvi) 7 eh@ya) bheyiE ) e

Va+bz Vaz vbx o Vay b(z —y)
(CL - b)Jl(Q\/ (CL - b) aJl(Q\/ﬂ / aJl 2\/7 bJ1 2\/ - a: (58b)
(a —b)x Vay oy — x)

bJ1(2Vb) / aJl(Q\/@) bJ1(2 (ZH'x))d
Vb o Vay Vbly +2)

Exchanging a and b and changing variables we combine (58b) and (58¢) into one single equation
for x > 0 and a,b > 0:

(@=pr@Vla=ba), ,_ «he@) [*ahCValy+a) L) . co
(a—b)x =0 vaz 0 Valy +2) Vb

The formula for = 0 in (59) is obtained by continuity. It is equivalent to

0= (58c)

/00 J1(u)J1(cw) d—; = %mln(c %) (¢>0) (60)
0

which is a very special case of formulas of Weber, Sonine and Schatheitlin ([33, 13.42.(1)]). Another
interesting special case of (59) is for a = b. The formula becomes

g [amane,

which is equivalent to a special case of a formula of Sonine ([33, 13.48.(12)]).

We already mentioned the equation 637?%‘]0(2\/%) = —Jo(2v/uv). New identities are obtained
from (59) or (58a) after taking either the a or the b derivative. We investigate no further (59) as the
corresponding semi-convergent integrals, in a form or another, are certainly among the formulas of
[33, §13]. Let us rather focus more closely on the case a,b > 0 ((58a).) We have a function which
is entire in @, b, and x and the identity holds for all complex values of a, b, and z. Let us take the
derivative with respect to a:

D@ ) = Sy - [ deva ‘W d (62
We replace b by —b and then set x = b. This gives:
L2565 @) = h(2via) + [ ' hieya) “1%(_:)@’” (63)

We take the derivative of (62) with respect to b:

zJi(2y/(a+b)z) (7 . p—
T /0 Jo(2y/a5)Jo(2/b@ — ) dy (64)
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Then we replace b by —b and set x = b:

b1 (2y/b(b — a)) = /b Jo(2v/ay)Io(2/b(b —y)) dy (65)
b(b—a) 0

Combining (63) and (65) by addition and substraction we discover that we have solved certain
integral equations:

1) = Vi =) - LI — 4 Dy i) (o)

o7 (2) = To(2y/bb— ) + W ) e ) (66D)

b
oF (2) + / Jo(@yED) G (v) dy = Jo(2v/ba) (66c)

b
o7 (z) — /O o2V 6y (y) dy = Jo(2v/bx) (66d)

The significance will appear later in the paper and we leave the matter here. The method was
devised after the importance of solving equations (66c) and (66d) had emerged and after the
solutions (66a) and (66b) had been obtained as the outcome of a more indirect path. Of course,
direct verification by replacement of the Bessel functions by their series expansions is possible and
easy.

5 Orthogonal projections and Hilbert space evaluators

Let a > 0 and let P, be the orthogonal projection on L?(0, a;dz) and Q, = HP,H the orthogonal
projection on H(L?(0,a;dx)) and let K, C L?(0,00;dx) be the Hilbert space of square integrable
functions f such that both f and H(f) have their supports in [a,00). Also we shall write H, =
P,HP,. Also we shall very often use D, = H? = P,HP,HP,. Using:

Jo(2y/7m) = Y (-1l (67)
n=0 )

we exhibit H, = P,HP, as a limit in operator norm of finite rank operators so P,H P, is a compact
(self-adjoint) operator. It is not possible for a non zero f € L?(0, a;dz) to be such that |H,(f)| =
IIf1l, as this would imply that H,(f) vanishes identically for > a, but H,(f) is an entire function.
So the operator norm of H, is strictly less than one, and 1 + H, as well as 1 — D, are invertible.
We consider the equation

o =u+H) u,v € L*(0,a;dz) (68)
Hence:
u+ Hy(v) = Py() (69a)
Hq(u) +v = Po(H(9)) (69b)
u= (1= Da)""(Pa(9) — HoPuH(9)) (69¢)
v = (1 - Da)_l(_HaPa(¢) + PaH(¢)) (69d)
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Then if ¢,, = uy, + H(vy) is L2-convergent, (u,) and (v,) will be convergent, and the vector space
sum L2(0, a; dx)+H(L?(0,a;dz)) is closed. Its elements are analytic functions for > a so certainly
this is a proper subspace of L?. Hence we obtain that each K, is not reduced to {0} and

K} = L*(0,a;dz) + H(L?(0, a; dz)) (70)

We also mention that U,~o K, is dense in but not equal to L?(0, oo; dz), more generally that U,~p K,
is dense in but not equal to Kj, and also obviously Ng<oo Ko = {0}, Na<ty Ko = K.

In this section a > 0 will be fixed (all defined quantities and functions will depend on a, but
this will not always be explicitely indicated.) We shall be occupied with understanding the vectors
X2 € K, such that

Vfe K, / f(@) X z)dz = f(s) = / flx)z™ da (71)
and in particular we are interested in computing
Xa(s,2) :/ Xg(x) X2 (x)dx (72)

As a is fixed here, we shall drop the superscript a to lighten the notation. For the time being we
shall restrict to R(s) > 3 and we define X, to be the orthogonal projection to K, of 1ys(z)z~*
As a preliminary to this study we need to say a few words regarding;:

05(2) 1= H(Lpsa(2)2") = / " ho2yFmy S dy (73)

a

The integral is absolutely convergent for R(s) > %, semi-convergent for R(s) > i, and g is defined
by the equation as an L? function for R(s) > 4 (it will prove to be entire in s for each z > 0). We

need the following identity, which shows also that gs(x) is analytic in > 0:

a > " gntl—s
gs(x) = x(s)a"" = /0 Jo(2y/xy)y~* dy = x(s)z° " — Z(—l)nm (74)
n=0 .

This is obtained first in the range 2 < R(s) < 1: [ Jo@yay)y = dy = [ Jo(2y/y)y* dy =
571 (x(s) — Oaw Jo(2vy)y~° dy) = 2" Ix(s) — foa Jo(2y/xy)y~*dy. The poles at s = 1, s = 2,
...are only apparent. The identity is valid by analytic continuation in the entire plane $(s) > %
For each given x > 0 we have in fact an entire function of s € C. But we are here more interested
in gs as a function of z and we indeed see that it is analytic in C\] — oo, 0] (it is an entire function
of x if s € —N). 13

There are unique vectors ug, vs in L2(0, a; dz) such that

Losa(2)r™® = X,(2) 4 us(x) + H(vs) (2) (75)
and they are the solutions to the system of equations:

s+ Ha(v,) = 0 (762)
Ha(us) +vs = Pa(gs) (76b)

3For some other transforms k(zy), such as the cosine transform, the argument must be slightly modified in order
to accomodate the fact fooo k(y)y~° dy has no range of absolute convergence.
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From (76a) we see that us is in fact the restriction to (0,a) of an entire funtion, and from (76b)
that v is the restriction to (0,a) of a function which is analytic in C\] — 00, 0]. Redefining us and
vs to now refer to these analytic functions their defining equations become (on (0, +00)):

us + HP,(vs) =0 (77a)
HP,(us) + vs = gs (77b)
and (75) becomes (we set Xs(a) = Xs(a+)):
Loza(2)2™* = Xo(2) + loco<a(®)us(x) + HPa(vs)(2) (78a)
Loza(z)z™" = Xo(2) — Loza(@)us(z) (78b)
Xs(z) = Ly>o(2) (7% + us(2)) (78¢)

The key to the next steps will be the idea to investigate the distribution (x% + 5)X, on the
(positive) real line. Let Dy be xd% + s. There holds:

DM = —HD;_, (79)

To compute %Pa(vs) we first suppose $(s) > 1, so (we know the behavior as  — 0 from (74))
L Pa(vs) = Pa(v)) — vs(a)da(z) and zL Py(vs) = Pu(av)) — avs(a)de(z). This remains true for
R(s) > 3. Applying Dy to (77a) thus gives Dy(us) — H (PaD1—s(vs) — avg(a)da(z)). We similarly
apply Di_g to (77b) and obtain the following system:

Ds(us)(2) — (HPyD1_svs)(2) = —avs(a)Jo(2vax) (80a)
—(HPuDsus)(x) + Di—s(vs)(x) = (D1-595) () — aus(a)Jo(2v/ax) (80Db)
From (73), we have D1_sgs = —HDs(1y>q2~%) = —H(a'"%5,(x)) = —a'=*Jp(2y/az). Let us define
Jg(x) = Jo(2Vax) (81)
We have proven:
+Dsus — HPyD1_svs = —avs(a)J§ (82a)
—HP,Dsus + D1_5vs = —ala™® + us(a))J§ (82h)
Restricting to the interval (0,a) and solving, we find:
PaDsus = —a(l = Do) (vs(a) I + (a™* + us(a)) HaJ§) (83a)
PyDi_gvs = —a(l — Dg) " ((a™% 4 us(a)) J3 + vs(a) Hy JG) (83b)
It is advantageous at this stage to define ¢} and ¢, to be the solutions of the equations (in
L%(0,a;dzx)):
b + Hatd = J§ (84a)
¢g — Haog = J§ (84b)

We already know from (66a) and (66b) exactly what ¢} and ¢, are (in this special case of the H
transform), but we shall proceed as if we didn’t. We see from (84a), (84b) that ¢} and ¢, are

entire functions, and we can rewrite the system as:'4
ba + HPupg = J§ (85a)
b5 — HPuby = Jg (85b)

Min conformity with our conventions, these are identities on (0,00); to see them as identities on C one must read

foa JQ(Z\/@)d)I(y) dy rather than (HP,¢7)(z).
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‘We observe the identities:

(1- Dyt = p 0% (36a)
(1 — Do) tH,J§ = Paw (86b)
So (83a) and (83b) become
Do, — 40"t us(;) — vs(a) o — T us(;l) + vs(a) oo (872)
Dy, — Lt us(2a) — vs(a) ot — Lt us(;) + vs(a) oo (87b)

From (87a) we compute successively (again, these are identities on (0, +00)):

a” + us(a) — vs(a)
2

a™* + us(a) + vs(a)
2

a”* +us(a) — a”* + us(a) + vs(a)
2 2

In (89), He¢, should perhaps be more precisely written as H (¢ 1,~0). From (85a) we know that

dT 1,50 is tempered as a distribution. From (78¢) we compute DsX; = 1,54Ds(us) + a(a™ +

us(a))dq(z) = Dsus — PyDsus + a(a™® + us(a))dq(x). From (87a) and(89) then follows:

HP,Dsus = a

(Jo —¢a) —a (=J5 +¢a) (88)

P,Dsus=a US(a) (511 - HQS;_) —a

(=6“+Ho,)  (89)

a”* + ug(a

2

aa’s + us(a) + vs(a)

Ll gt —6) - -

DX, = +a

(¢a —Hoy +6)
+a(a™® + us(a))da()

(90)

And the result of the computation is:

DX, = +a U 0D (e gy 4 oD i o)
We then define the remarkable distributions:
Ao = Y67+ H0D) (92)
~iBy = Y07 +Hop) (92b)
E,= A, —iB, (92¢)

From (84a) we observe that A, has its support in [a, c0). Furthermore it is A invariant. Similarly,
—iB,, which is H anti invariant, also has its support in [a,4+00). We recover A, and —iB, from
E, through taking the invariant and anti-invariant parts. We may also rewrite DX as:

DsXs = vVa(a™® 4+ us(a))Ey — Vavs(a)HE, (93)

Some other manners of writing A, and —iB, are useful: from (85a) H¢} = 6, — P,¢S and from
(85b) Ho, = b + Pudd,, so:

Aa = ?(‘% + ¢:1I>a) (94&)
. a _
—iB, = %(511 — ¢ 1x>a) (94b)
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And, we take also notice of the following definitions and identities:
. . 1,. .
Ja = \/6(5a - ¢2_10<x<a) Ja = \/&H(lﬁ:{_ A, = *(]a + Hja) (953)
—ik, = \/&(5a + ¢;10<x<a) —ikq = \/&H(ﬁ; = 7(]{ ) (95b)

From (85a) and (85b) we know that ¢} and ¢, are bounded, so the right Mellin transforms are
defined directly for R(s) > 1 by:1?

T = 2L (= / ot (@ —de) (96a)

/ o (2)z° dcz:) (96b)

Ea(s) = va (4 5 [ (6 @)~ oy (o)~ do) (960)
AEDS) = vay [ 05+ 6 @) da (964)

—

—iB,(s) =

\% N\

From (85a) and (85b) we know that ¢ — ¢, is square-integrable at +o0, so, using Hol = 6, — Pagd
and Ho, =, + Py, we compute:

/ T (6 (@) — 67 (@)a* de = / T (HoE —HE)ga(w) da = — / "6 (@) + 67 (@)ga(a) dz (97)
a 0 0

Then using (86a):

g (z) + ¢4 () ¢ “1(7a ¢ 1o -
/0 ——y—gs(z)dz = | (1= Do)~ (J)(2)gs(z) dz = 0 (@)((1 = Da) ™" (g))(x) dz
(98)
Comparing with (76a) and (76b) the right-most term of (98) may be written as [3" Jo(2v/az)vy(x) dz
which in turn we recognize from (77a) to be —ug(a). We have thus proven the identity:

Ea(s) = Va(a™ + us(a)) (99)

In a similar manner we have:

¢a ( x)+¢ @)~ [ s ¢ —¢5(z) + ¢ (2)
/ e ey dx—/ Jo(2v/ax)x d:c+/0 fgs(x)dx (100)

a

+( @ ¢
/ —%a +¢a( ) S(m)dxz/ (1 = Do) HoJ§) (%) gs(x) dm:—/ Jo(2Vaw)us(x) dz
0

0
=vs(a) — gs(a) = vs(a) — / Jo(2v/ax)x™% dz
(101)

5the integral for E;(s) is certainly absolutely convergent for R(s) > 1 as ¢F — ¢, is square integrable on (0, c0),
and in fact it is absolutely convergent for R(s) > i. As we know already completely explicitely ¢7 and ¢, , we do not
pause on this here. A general argument suitable to establish in more general cases absolute convergence for R(s) > o

for some o < % will be given later.
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Ay(s) +iBy(s) = @(s) = \/E/OO wgf‘g dx = v/avs(a) (102)
Then, we obtain the reformulation of (93) as:
DyX, = Bo(s)Ey — H(Ea)(s)YHE, (103)

And, noting ﬁ(z) =(s+z— 1))/(;(2) =(s+2z—1) [ 7 Xy(x)X.(z) dz we are finally led to the
remarkable result:

Eu(s)Ea(2) — H(EL)(s)HE,(2)
s+z—1

Xa(s,2) = /00 X)X (x)dx = (104)

This equation has been proven under the assumption R(s) > 1, and R(z) > 3. To complete the

discussion we need to know that the evaluators f — f(s), s € C are indeed continuous linear
forms on K,. For R(s) > 3, we have f(s) = [X f(z)a=*dz. For R(s) < i we have f(s) =
Fg(;)s)’lj(?)(l —s). For R(s) = 1 continuity follows by the Banach-Steinhaus theorem, and of
course more elementary proofs exist (as in [3] for the cosine or sine transform). So we do have
unique Hilbert space vectors X € K, such that Vf € K,Vs € C f(s [° X&(x) f(x) de. Then
(104) holds throughout C x C by analytic continuation.

The vectors X are zero for s € —N, and it is more precise to use vectors X2 = I'(s) X% which
are non-zero for all s € C. These vectors are the evaluators!® for f — F(s), F(s) = D(s)f(s).
We recapitulate some of the results in the following theorem, whose analog for the cosine (or sine)
transform was given in [5] (up to changes of variables and notations, the first paragraph as well as
equation (108) are theorems from [1]; the equations (105), (106), (107) are our contributions. In
this specific case of H we shall later identify exactly ¢ and ¢, and E, and &,. As we shall explain

the analog of the £,-function in [1] has value 1 at s = 3, and is not identical with the &, here):

=

Theorem 7. For a given a > 0 let K, be the Hilbert space of square integrable functions f(x) on
[a, +00) whose H-transforms [~ Jo(2\/Ty) f ( Ydy (in the L?- sense) again vanish for 0 < x < a.

The completed right Mellin transforms T'(s)f(s) = I'(s f f(@)x=*dx are entire functions and
evaluations at s € C are continuous linear forms.
Let X¢ for each s € C be the unique vector in K, such that Vf € K, I'(s f f(2) X2 (z) dx

Let ¢a+ and ¢, be the entire functions which are the solutions to:

oF (2) + / " ho(@yE)6E (v) dy = Jo(2v/ax) (105)

a
07 (@) = [ Dy ) dy = To2vam) (106)
Then
IoR —s 1 > + — —s
Ba(s) = V(a4 5 [ (01@) - g (a)a ds) (107)
is an entire function with trivial zeros at —N and, defining E,(s) = F(S)E;(S), we have:
o a a - Ca 1- a 1-
Vs,z € C / X (2) 20 () da — S2($)%a(2) = Eall = $)Ea(l = 2) (108)
o s+z-—1
evaluators for the “euclidean” product J fgdz, not the “hilbertian” [ fgdu.
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We knew in advance that we had to end up with a formula such as (108) (with a & function to
be discovered!”), and this is why we started investigating (x% + 5)X%(x) in the first place! The
reason is this: the Hilbert space of the entire functions F(s), f € K, (the Hilbert structure is the
one from K, or (Fi,F2) = f% -1 Fi(s)Fa(s )|1“|( )||2) verifies the de Branges axioms [2], up to

the change of variable s = % — iz Lct us recall the axioms of [2] for a (non-zero) Hilbert space of

entire functions F'(z):
(H1) for each z, evalution at z is a continuous linear form,

(H2) for each F, z — F(%Z) belongs to the Hilbert space and has the same norm as F,

(H3) if F(w) = 0 then G(z) = 2=2F(z) belongs to the space and has the same norm as F

Let K(z,w) be defined as the evaluator at z: VF F(z) = (F, K(z,-)). It is anti-analytic in z and
analytic in w (the scalar product is complex linear in its first entry, and conjugate linear in its
second entry). It is a reproducing kernel: K(z,w) = (K(z,-), K(w,-)). It is proven in [2] that (H1),
(H2), (H3) entail the existence of an entire function E(z) with |E(z)| > |E(Z)| for & z) > 0, such

that the space is exactly the set of entire functions F(z) such that both gz) and Bls g belong to

H?(3(2) > 0), and the Hilbert space norm of F' is 5 [o |F(t) |2 dt)lz 18 We have incorporated a 27

for easier comparison with our conventions. Then the reproducmg kernel is expressed as:

E(2)E(w) — BE(z)E(w)
i(Z—w)

K(z,w) = (109)
The function E is not unique; if the space has the isometric symmetry F(z) — F(—z), a function
E exists which is real on the imaginary axis and writing £ = A — iB where A and B are real on
the real axis, the pair (A4, B) is unique up to A + kA, B — k™'B, A is even and B is odd. If
A(0) # 0 (this happens exactly when the space contains at least one element not vanishing at 0)
then it may be uniquely normalized so that A(0) = 1. Then E is uniquely determined.

Model examples are the Paley-Wiener spaces of entire functions F(z) of exponential type at
most 7 with ||[F||? = = [ |[F(t)]>dt < co. Then E(z) = e~"* is a possible E function. The Paley-
Wiener spaces are related to the study of the differential operator fdd—; on the positive half-line,
and an important class of spaces verifying the axioms of [2] is associated with the theory of the
eigenfunction expansions for Schrédinger operators f%JrV(x) ([27]). In these examples the spaces
are indexed by a parameter 7 (the Schrodinger operator is first studied on a finite interval (0, 7))
and they are ordered by isometric inclusions (the E-function of a bigger space may be used in the
computation of the norm of an element of a smaller space). Typically indeed, de Branges spaces are
studied included in one fixed space L?(R, Edy) are ordered by isometric inclusion and indexed by a
parameter!'®. Obviously this theory is intimately related with the Weyl-Stone-Titchmarsh-Kodaira
theory of the spectral measure. The articles of Dym [14] and Remling [27], the book of Dym and
McKean [15], will be useful to the interested reader. In the case of the study of H we will have
dv(7) = |D(3 +iv)|~2dy. 1t is an important flexibility of the axioms not to be limited to functions
of finite exponential type, and also the spectral measures are not necessarily such that (1 + %)~

7the method was initially developed by the author for the cosine and sine transforms [5, 6] and leads for them
to the only known “explicit” formulas for &; for the zero order Hankel transform the problem of computing the
reproducing kernel had been already solved by de Branges [1].

8the conditions on F(z) are not formulated in [2] as Hardy space conditions, but they are exactly equivalent.

9the axioms allow for “jumps” in the isometric chain of inclusions, as occur in the theory of the Krein strings [15],
discrete Schrodinger equations being special cases.
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is integrable. It has turned out in our study of the spaces associated with the H-transform that
the naturally occurring E function is not the one normalized to take value 1 at z = 0. Rather the
normalization will prove to be limy_, 4~ j%(;;') = 1. This has an important impact on the aspect
of the differential equations which will govern the deformation of the K,’s with respect to a: they
will take the form of a first order linear differential system in canonical form (as generally studied
in [21, §3].) ~

The space of the functions F(s) = I'(s)f(s), f € K, verify (this is easy) the de Branges axioms,

with s = % — iz and they were defined?® in [1]. The spaces K, have the real structure, which is

manifest in the s variable through the isometry F(s) — F(5). Rather than with the reproducing
kernel K(z1,z2) we work mainly with X(s1,s2) = K(—27, 22) which is analytic in both variables.
Of course then it is X' (3, s) which gives the squared norm of the evaluator at s. Writing £(s) = E(z)
we obtain from (109):

5(81)5(82) — 5(1 — 51)8(1 — 82)

s1+s9—1

which is indeed what has appeared on the right hand side of (108). With &(s) = A(s) — iB(s), A
(resp. B) even (resp. odd) under s — 1 — s, this is also:

2—iB(51)A(52) + A(s1)(—iB(s2))
S1+s9—1

X(Sl,SQ) = (110)

X(81752) = (111)

and for R(s) # %7 0< X(5,s) = 2% so both A and B have all their zeros on the critical
2
1

line.?

The method in this chapter has been developed in [5, 8, 6] for the case of the cosine and
sine transforms, and it leads to the currently only known “explicit” formulae?? for the structural
elements £, A, B and reproducing kernels for the spaces for the cosine and sine transforms. So far,
almost nothing very specific to H has been used apart from it being self-adjoint self-reciprocal with
an entire multiplicative kernel k(xy). The next section is still of a very general validity.

As was mentioned in the Introduction the realization of the structural elements of the spaces as
right Mellin transforms of distributions is a characteristic aspect of the method; the Dirac delta’s
in the expressions for A,(x) and —iB,(x) could have been overlooked if we had only been prepared
to use functions, and the whole development was based on the computation of (x% +5)Xs(x) as a
distribution. This aspect will be further reinforced in the concluding chapter of the paper (section
9) where it will be seen that the distributions Aq(x) and —iB,(z) are very naturally differences of
boundary values of analytic functions, so they are hyperfunctions [23] in a natural manner.

Let us consider the behavior of ;1;(3), E(S), E;(s) and H/(E)(s) for R(s) > 5. Let us first
look at Eg(s) = \/ZL(a_S + 5 [2(o8 (2) — ¢ (z))z* dx). We remark that ¢} (x) — ¢, () is the
H-transform of —(¢F (z) + ¢, (2))Lo<z<a(T).

Lemma 8. Let k(x) a continuous function on [0,4+00) and A € [0,1] be such that ki(x) =
Jy k@) dt = O(z?) as © — oco. Let a > 0 and let f(z) be an absolutely continuous function
on [0,a]. Then [3 k(zy)f(y)dy = O(z*~1) as x — +o0.

There exists C' < oo such that Va > 0 |ky(z)| < C x4, Then Jo k(@y) f(y) dy = Tki(za) f(a) —
3 Jo Fa(@y) f'(y) dy, and | [§ Ky (2y) f'(y) dy| < Ca? [§y?|f'(y)| dy. This was easy. .

2%in the variable z, and associated with the Hankel transform of order zero, rather than with the H transform.
2 2
*'this is also seen from 2A(s) = £(s) + E(1 — s) as [E(s)| > |E(1 — s)| for R(s) > 5. As X(5,5) = %
this is in fact the same argument.
2235 “explicit” as the Fredholm determinants of the finite Dirichlet kernels are “explicit”.
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With k(z) = Jo(24/x), one has ki(x) = 2 J1(2/x) = O(mi) We have ¢ (z) — ¢, (x) =
— [y Jo(2y/7y) (¢ (z) + ¢, (x)) dy and from Lemma 8 this is O(xfg). So the integral in the expres-
sion for E;(s) is absolutely convergent for R(s) > 1. In particular E, is bounded on the critical
line. But then H/(E\a)(s) = x(s)Eq(1 — s) is also bounded. Hence:

Proposition 9. The functions ;L\l and B\a are bounded on the critical line.

Let us turn to the situation regarding (s) = o — +oo
Let f(x) be a functlon of class C? on [0,a] and e(z) = [ Jo(2y/@y)f(y)dy. 1t is O(m*%)
There holds ‘ze(z) = [5'( dnyO 2yvTy)f(y)dy = af(a )Jg 2v/az) — [ Jo(2\/xy) yf' (y) dy. Let

= fo Jo 2./T )yf’(y) dy. By the Lemma 8 it is O(z™ 4). For R(s) > %, with absolutely
convergent integrals:

af(a) /aoo Jo(2v/ax)x™* dx — /aoo k(z)z™%dr = —ae(a)a™ + s /aoo e(x)z™* dx (112)

We show that the left hand side of (112) is O(a_sé) for R(s) > 3. We apply to k what we did for
e, Lak(z) = a’f'(a)Jo(2v/az) — foa Jo(2y/zy) y(yf') (y) dy. This is O(1) (using |Jo| < 1). So for
R(s) > 1 we can compute [( 4 rk(z))z~* dz by integration by parts, this gives —ak(a)a™* +
s [ k(z)z=*dz. So for R(s) 2 1+ e we have [“k(z)z~*dz = O(a®l). Then regarding
e JO(QM):L”S dz we note that Lz.Jy(2v/az) = Jo(2v/az) —/azJi(2y/az), so for R(s) > 3+e we
can apply the same method of integration by parts, and prove that faoo Jo(2y/ax)x™ dx = O(a_s%).
So the left hand side of (112) is indeed O(a‘sl) for R(s) > 3 and we have:

Lemma 10. Let f(z) be a function of class C* on [0,a] and let e(z) = [ Jo(2y/Ty) f(y) dy. One
has

DO o

o0 —S 1
/ e(x)r™*dx = as (ae(a) + O(g)) R(s) > o) (113)
Let us return to [ Jo(2v/az)z =% dz = 1 (Jo(2a)a'~* + [ (Jo(2y/az) — Vaz J,(2/az))z~* dz).
We want to iterate so we also need z - \/azJ; (2\/az) = i%/aw#\‘jﬂ%/ax‘h (2v/ax) = axJy(2v/az).
So we can integrate by parts and obtain that the last Mellin integral is O(a=*1) for R(s) > 7 + .
So, certainly:

/ " v dr = “: (aJo(2a) + 0(2)) (R(s) >

Using ¢ = J§ — HP,¢) and ¢, = J§ + HP,¢, and combining (113) an

) (114)

ST IR

(114) we obtain:

Proposition 11. One has for R(s) > oo (here 09 = 3 for ezample):

— 1 + —ap~ 1 — + 1
Ei(s)=ab=(s 0@ o)) T = Ve @ o)
(115a)
— 1 + - 1 — - 1
AE(s) = bW oLy i) = Y- 2@ oL
(115b)
Theorem 12. One has
~iBa(0) _ £(1-0) ad (a) + ady (a)
B B LN = B et % (116)
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So the functions A, and B, are not normalized as is usually done in [2] which is to impose (when
possible) to the E function to have value 1 at the origin (which for us is s = %; the exact value of
Aq(%) will be obtained later.) This difference in normalization is related to the realization of the
differential equations governing the deformation of the spaces K, as a first order differential system
in “canonical” form, as in the classical spectral theory of linear differential equations ([21, 10].)
This allows to realize the self-reciprocal scale reversing operator as a scattering [6].

6 Fredholm determinants, the first order differential system, and
scattering

Let us return to the defining equations for the entire functions ¢}~ and ¢ :

b + HP.oF = J§ (117a)
bg —HPup, = J§ (117b)

Either we read these equations as identities on (0, 00), or we decide that HP,¢F in fact stands for
foa Jo(2\/Zy)éE (y) dy, and the equation holds for = € C; the latter option slightly conflicts with our
earlier definition of H as an operator on functions or distributions. But whatever choice is made
this has no impact on what comes next. We shall apply to the equations the operators a% and
a:a% As J§(z) = Jo(2y/ax) we have a%]{} = Jsa%Jg. We write 0 = xa% +3= %x — 1. First we

have:
9 + 9 + _ + a 2 a
a%qﬁa + ’HPGQ%% = —ag, (a)Jg + aanO (118a)
o o I
Q%Qba — HPQCL%d)a = +a¢a (CL)JO + Q%JO (118b)

Then, as wa%H = —Ha%:c, O0xH = —Hy, 0o Pof = (Padzf) — af(a)do(x), 05 J§ = a%J{)‘ + %Jg:

1
.65 — HPaGu6f = (5 — a0f @) G +an-Jg (1192)
1 0
67+ HPabuby = (3 + by (@) + e Jg (190)
Combining we obtain:
8~ 5.0 + HPuas6F — 5.07) = ~(a9}(a) + a0y (@) 4 )T (1200)
a’aaa z¥a aaaaa zPq ) = —0Pq (@ agq (a 20
0 _ o _ 1,
05200 = 0aby — HPulag-dq = 020q) = +(adg (@) + ady (a) = 5) T (120b)
Comparing with (117a) and (117b), and as there is uniqueness:
ap - + - 1y o+
a%(ﬁa - 5Z¢)a = 7(a¢a (Cl) + a¢a (Cl) + §)¢a (121&)
0 1
0 b7 — bt = ot (@) + vy (@) )07 (1211)
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I'(s)

The quantity a¢} (a) + ap, (a) will play a fundamental role and we shall denote it by p(a).?* So:

0
(a5 + 5+ m(@)6F = 8,65 (1222)

1

(g + 3 — ()65 = 5.0} (1220)

It follows easily from this that a - (¢F¢7) = —dF by + 2 22((¢F)% + (¢7)?). So

ot [ ot @s ) do = avi(a / G (@07 () o+ Sa(0F (@ + 07 (@) (123)

ata / ot %ma)? (124)

We then compute:

/ o (x x)dr = /Oa((l — Da)flJ()’)(z)Jg(x) dz | (125)

where we recall ¢f = (1 + H, )’1JO, ¢y = (1 — H,)"1J§, D, = HZ. The operator D, acts
on L%(0,a;dz) with kernel D,( = [y Jo(2y/@y)Jo(2,/yZ) dy. After the change of variables
x = at, y = au, 2 = av thls becomes the operator d, on L'(0,1;dt) with kernel d,(t,v) =
fol aJo(2av/tu) aJo(Qa\/M) du. We compute the derivative with respect to a:

1
% /O aJo(2aV/tu) aJo(2av/uv) du (126a)

1
/ ((QU% + 1)Jo(2aVtu)) aJo(2a/uv) du + / aJO(Za\/E))((Z—u —1)Jo(2ay/uv)) du
(126b)
= 2a.Jy(2aV/1) Jo(2a+/v) (126¢)

So 4d, is a rank one operator, with range CJy(2av/t)1o<t<1(t). We now use the well-known
formula

d
T 1—ds)=— 1—dg T a 1
log det( dy) Tr(( da) ad ) (127)

The rank one operator (1 — da)_lida has the function (1 — d,)~'2a.Jy(2aV/t) as eigenvector

and the eigenvalue is fol Jo(2av/t)((1 — dy)~'2aJo(2a+/v))(t) dt. Going back to (0,a) we obtain
2 [y Jo(2v/az)((1 — Da) "' Jo(2v/az))(2) dz and in view of (125) we have proven:

d a
T logdet(1 — D,) = —2/ o (x)p, (v) dx (128)
0
Then, using (124), we have the important formula:

d d
?2_ @ a _
wula)” = am-a-- logdet(1 — Dy,) (129)

Zmaybe it would be unfair to hide the fact that p(a) = 2a, in this study of H! In a later section a further mu
function, associated with a variant of #H, will also be found explicitely and it will be quite more complicated.
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We shall now also relate ¢ (a) and ¢ (a) to Fredholm determinants. In fact the following holds:
N d
ag) (a) = +ad— log det(1 + Hy) (130a)
a
ag, (a) = fadi log det(1 — Hy) (130Db)
a

This is the application of a well-known general theorem, for any continuous kernel k(x,y): if

)+ Jo k(z,y)w(y) dy = k(x,a) for 0 < x < a then w(a) = —I—%logdet(oﬂ)(é(a@ —y) + k(z,y)).
A proof may be given which is of a somewhat similar kind as the one given above for (128), or
one may more directly use the Fredholm’s formulas for the determinant and the resolvent.?* The
theorem is proven in the book of P. Lax [20], Theorem 12 of Chapter 24 (Lax treats the case of a
kernel on (a,400), here we have the simpler case of a finite interval (0,a).) This means that u(a)
has another expression in terms of Fredholm determinants:

d . det(1+ H,)

p(a) = a% 0g m (131)
Combining (129) and (131) we obtain:
d d d det(1 + H,) d d det(1 + H,)
—QCL% ao- logdet(1+ H,) = ( %1 dot(1— H,) Ha)) %Q%IOg det(1 = H,) (132a)
d d d det(1l + H,) d det(1 + H,)

—QG% (l% logdet(l — Ha) ( da 1 (_I;Ia)> adi logm (132b)
20067 (a) = —u(a)” + g (a) (1320)
2adiibaq§g(a) = +u(a)® + ap'(a) (132d)

d
Zo (@ () = 6 () = alé] (a) + ¢, (a))* (132e)

These Fredholm determinants identities are reminiscent of certain well-known Gaudin identities
[22, App. A16], which apply to the even and odd parts of an additive (Toeplitz) convolution kernel
on an interval (—a,a); here the situation is with kernels k(xy) which have a multiplicative look,
and reduction to the additive case would give g(t + u) type kernels on semi-infinite intervals.

We have defined 4, = @((ﬁj + Hot) and —iB, = @(—(b; + He, ). Let us recall that
here ¢ is restricted to [0, +0c0) and is then tempered as a distribution. Using the differential
equations (122a) and (122b) and the commutation property 0, H = —Hdy, 05 = xa% + %, we

have 0, Ag = (067 — Hoat}) = Y(a + 3 — p(a)) (67 — Hoy) = —(a — p(a))(—iB,) and

a(~iBa) = Y2 (~(af + 5+ p(@)67 — (afh + &+ p(@)HoT) = —(afk + p(a)) As. The following
first order system of differential equations therefore holds:

a%Aa = —u(a)As — 6, (—iBy,) (133a)
a2 (CiB,) = tu(a)(~iBy) — 6,4, (133b)

da

241et us recall that for a continuous kernel on a finite interval, the formula of Fredholm for a determinant as a
convergent series always applies, even if the operator given by the kernel is not trace class, which may happen.
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Then we also have the second order differential equations (a2 —yu(a)) (a2 + pu(a)) A, = +62A, and

(aaa + u(a))(a% —u(a))(—iB,) = +62(—iB,), or, taking the right Mellin transforms, and writing
s = 2—1—17, Oy = 17:

9 O —~ NG S
—a—aaa—aaAa + (p(a)” — ap'(a)) Ay =y A, (134a)
ﬁ 2 o 9 , 2
—aaaaaa( iBa) + (u(a)” + ap'(a))(—iBg) = v*(—iBy) (134b)

With the new variable u = log(a) we obtain Dirac and Schrodinger equations which are associated
with this study of #, modeled on the study of the cosine and sine transforms summarized in [5, 6].
All quantities in the statement of the theorem will be completely explicited later in terms of Bessel
functions, but we keep the notation sufficiently general to allow, if an interesting other case arises,
to write down the identical results:

Theorem 13. For each a > 0 let ¢} and ¢, be the entire functions which are the solutions to:
6@+ [ By W) dy = Do2vam) (1352)
0z (@) = [ Dy ) dy = To2v/am) (1350)

Let H, be the integral operator on L*(0,a;dx) with kernel Jo(2,/Ty). There holds:

oF (a) = —I—di log det(1 + Hy) (135¢)

¢q (@) = ——log det(1 — Hy) . (135d)

The tempered distributions A, = @(1 + H) (9T lo<cz<oo) and By = i@(—l + H) (P, Loczcoo)
vanish on (—o0,a) and are respectively self-reciprocal and skew-reciprocal under H. Their completed
right Mellin transforms A.(s) = F(S)ZXZ(S) and Bg(s) = I‘(S)E(s) are entire functions with all
their zeros on the critical line, they are respectively even and odd for s <» 1 — s, and they verify
the following Dirac and Schrodinger types of differential equations in the variable v = log(a),
—o0 < u < 400,

d
S Ao = —p(a) Ao — B, (135e)
d
%Ba = +N(G)Ba + "YAa (135f)
2 &’
Ny ( Vil )) A, (135¢)
2 d?
yBa:< d2+V()>Ba (135h)
du(a) d?logdet(1 + H,) .
_ 2 _ - _
Vi(loga) = u(a) T 2 02 (1351)
du(a) _d?logdet(1 — H,) .
d det(l +H,) L _
— _— 135k
(a') d det( H ) d)a (a’) + ad)a (a’) ( 35 )
where s = % + 3.
Rejecta Mathematica Vol. 2, No. 1, June 2011 88

@This work is published under the Creative Commons Attribution-NonCommercial License. http://creativecommons.org/licenses/by-nc/2.5/legalcode


http://math.rejecta.org
http://creativecommons.org/licenses/by-nc/2.5/legalcode

T'(1-—s)

J. Burnol Scattering, determinants, hyperfunctions in relation to )

a(u)
p(u)

|B(u)|>4¢, and the two equivalent differential systems in canonical forms:

3
(5 o) do ey 7)) [500] = 50) (136)

Let us consider the Hilbert space of pairs { } on R with squared norms [*_|a(u)* +

B(u)

([ 200 )Ll L] o

The components obey the corresponding Schrédinger equations:

~o"(u) + Vi (w)a(u) = +a Vi) = p(ery? — 2D (138)
—B"(w) + V_(u)B(w) = 128 V- () = p(ey? + L) (138b)

Regarding the behavior at —oco, we are in the limit-point case for each of the Schrédinger equations
(138a) and (138b) because clearly (say, from the defining integral equations for ¢} and ¢, ) one has
oF(a) —a—s0 Jo(0) =1, ¢ (a) —a—0 1, p(a) ~q—0 2a, so the potentials are exponentially vanishing
as u — —oo. Perhaps we should reveal that one has exactly u(a) = 2a = 2e" so we are dealing
here with quite concrete Schrodinger equations and Dirac systems whose exact solutions will later
be written explicitely in terms of modified Bessel functions, but we delay using any information
which would be too specific of the H-transform.
For each vy € C

(139)

U |:Acxp(u)(% + ZV):|

Bexp(u) (% + i’Y)
is a (non-zero) solution of the system (136), and we now show that it is square-integrable (with re-
spect to du = dlog(a)) at +00. Let us recall the equation (111) (s+2—1)X,(s, 2) = —2iBa(s)As(2)—
2iA4(8)Ba(z), from which we deduce

a%){a(s, z) = —2A,(5)Au(2) — 2(iBa(8))(iBa(2)) (140)

We have® ||X9]12 = X,(s,5), Aa(3) = Au(s), iBu(3) = iBa(s), s0
9 | ya
a5 AN = =2 Aa(s)* — 2/Ba(s) | (141)

and as of course limg— o0 [|X%][* = 0 (we have |XZ[? < [*]|X}*(x) dz for a > 1) we obtain:

a2 > 2 2, da
vs e C IAZNT=2 [ ([Ma(s)” +1Ba(s)[) (142)
a
This establishes the square-integrability at +oo of [gexp:“; ((Ss)) } , for any s € C.
exp(u

The solutions of (136) with eigenvalue v = 0 are {A“é%)} and {Aa(%)—l } . The former is square-

integrable, so from 2 < t + t~1 the latter then necessarily is not. This confirms that the Dirac
system (136) is in the limit point case at +o0o (according to a general theorem of Levitan [21, §13,

et us recall the notation X = I'(s)X¢ € L*(a, +-o00; dz).
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Thm 7.1] any first order differential operator [91 (1)] % + [iEZ)) ZEZ” with continuous coeflicients is

in the limit point case at infinity). So the pair (139) is in fact, for any v € C, the unique solution of
(136) which is square-integrable at +o0o. Also the Schrédinger equation (138b) is in the limit point
case as not all of its solutions are square integrable at +0o. Whether the limit-point case at 4+o00
holds for equation (138a) is less evident. Let us recall from [10, §9, Thm 2.4] and [26, §X, Thm X.8]
that a sufficient condition for this is the existence of a lowerbound lim inf, ;e V4 (u)/u? > —oo.
We will prove in the next chapter that p(a) = 2a = 2e* so this is certainly the case here. In the
present chapter only the fact that the Dirac system is known to be in the limit-point case will be
used.

We now take uy = log ap and apply on (ug, 00) the Weyl-Stone-Titchmarsh-Kodaira theory ([10,
89], [21, §3]). Let ¥(u, s) be the unique solution of the system (136) for the eigenvalue v, s = %+i’y,
and with the initial condition ¢ (ug, s) = [§] and let ¢(u, s) be the unique solution with the initial
condition ¢(ug,s) = [{]. Let m(y)¥(u,s) + ¢(u,s) for Iy > 0 be the unique solution which is

square-integrable on (ug,+00). So m(y) = g“o((:)), s = % +iy, R(s) < . It is a fundamental
ag

3
general property of the m function from Hermann Weyl’s theory that S(m(v)) > 0 (for () > 0.)
Here, we have a case where the m-function is found to be meromorphic on all of C; so we see that its
poles and zeros on R are simple. Furthermore, the spectral measure v is obtained via the formula
v(a,b) = lim o+ %fab Sm(y + i€) dy (under the condition v{a,b} = 0). We obtain:

= Y Lt s (143
Bao(ﬁ):O a0

The spectrum is thus purely discrete and the general theory tells us further that the finite linear

combinations 3’ ¢, _’?gZé’z)p)dJ(u,p) have squared norms ) _’?ggi’(’;ﬂcp‘? and also that they are
. ’ACX u
dense in L?((ug,00) — CZ; du). For By, (p) = 0, ¥(u,p) = Ag(p)~? |:Bex;)((u))((g))i| 1y>y0(w), so the

Z-Aexp(u)(p)
2Bexp(u) (P)
satisfy || Z° [ = —2Aq,(p) i B}, (p). Similarly a spectral interpretation is given to the zeros of Aq,

vectors Zg0 = [ } Ly>y(u) are an orthogonal basis of L?((ug,00) — C?; 3du) and they

if one looks at the initial condition [9]. The factors of 2 and %, have been incorporated so that the
statement may be translated (taking into account results established later) into the fact that the
evaluators K, (p, z), for By, (p) = 0, are an orthogonal basis of the Hilbert space of the functions
F(z)f(z), f € Kg,. This last statement is a general theorem (under a certain condition) for spaces
with the de Branges axioms [2, §22].

To discuss in a self-contained manner the generalized Parseval identity which is associated with
the differential system on the full line, it is convenient to make a preliminary majoration of || X2||?,
R(s) = 5. From (108) we have, for R(s) = 5 [|X2[|> = 2R(E4(5)4(5)). And Eu(s) = I(s)Eq(s).
And E\a(s) = ﬁ(a’s + 5 [Z(od (x) — o ()™ dm). We know from the discussion of Lemma

9 that the integral in the expression for E;(s) is absolutely convergent for R(s) > 1. Hence by

the Riemann-Lebesgue lemma E\a(% +iy) ~ a” as |y| = oo, v € R. Similarly, E\al(% +iy) ~
—log(a)a=®. So, with [|X2||? = |['(s)|?||X2||* and using Stirling’s formula we obtain:

1

|2 ~ 2log|s| as |s| = o0, R(s) = 3.

Lemma 14. For each given a > 0 one has || X¢

Ba(s)

~“7" is square integrable, so s71B,(s) is

From (104) expressed using A, and B, we see that

1
2
square integrable on the critical line (with respect to |ds|). Then using again (104) we see that
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L(s)
3_1;1;(3) is also square integrable on the critical line.?® Let us pick a function F(s) on the critical
line which is such that sF(s) is square integrable. Then F(s );1;(5) and F(S)E;(S) are absolutely
integrable on the critical line and ( f% _ |F( ) a(8)]'5 ‘dsl < C’f 1 lAT(‘?P% and similarly

[ 2 [
with By. If we define ap(u) =2 [p 1 F Aq(s )'ds‘ and Br(u) = Qf%( )=1 F(s)Ba(s )‘dé‘ we then
compute: o
- [ Aa(s)2 + | Ba(s)?) du |ds
[ lert? + pp@panse [ : ol
ug R(s)=1 |s| o
Xa 2
O IRPI
2 Jy(s)=1 |s|2 27
So ap(u) and Br(u) are square integrable at +oo. | More precisely the above upper bound holds as
well for [p o 1 [F(s ) A(s )||ds‘ and [p |F( )Ba(s )|‘ds‘ So the double integrals
2
// A (2)A (s)F(s) __lds| du (145a)
wo<u<ooR(s)—1 P ew) 270 (s)|
|ds|
Beoxo(w) (2) Bexp(u) (8) F(8) — == du (145b)
//uo<u<oo,§R(s)—; exp(u) exp(u) 27T|F(5)|2
where z € C is arbitrary, and F(s) = I'(s)F(s), are absolutely convergent and Fubini may be
employed. Using (140):
oo S
Xexp(uo)(zag) = 2/ (Aexp(u) (Z)Aexp(u)(s) + Bexp(u)(z)Bexp(u)(s)) du (146)
)
And we obtain the following identity of absolutely convergent integrals, for any F(s) = I'(s)F(s)
with s F(s) € L2(R(s) = ;2
, s o
Xex u (sz)]:( )7 = (Aex u (Z)aF(u) + Bex u (Z)BF(U)) du (147)
/%R(s)—é p(uo) 27|T(s) 2 o p(u) p(u)
We shall prove that this identity holds under the weaker hypothesis F(s) € L*(R(s) = 1; %)
First, still with s F'(s) square integrable we suppose additionally that F = j?with fe Kexp(u0)27
The hilbertian kernel Keyy(u0) (25 8) 18 Xexp(ug) (%5 5) 80 Kexp(ug) (25 8) = Xexp(ug) (25 5)- The equations
give then:
F@) = [ (Ao (21 () + By ()8 (1) d (1480)
ug
ar(u) =2 / Fls)Aa(s)5 ds| (148b)
Flu) = PYNT=vaRN1
R(s)=1 2 T (s)[?
st =2 [ FoBus) (1450)
F =
R(s)=1 27 [D(s)[?
26we know in fact according to proposition 11 that ;l; and J/B; are bounded on the critical line.
#Tthis is certainly possible as we know that the f(z) which are smooth, vanishing on (0, a) and of Schwartz decrease
as & — +oo are dense in K.
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We have worked under the hypothesis that sF'(s) is square integrable. To show that the formulae
extend in the L? sense, we first examine:

— |dsal

2= S S 7|d81| S S
lovp (w)] _4-/9?(51)_1 F(s1) Al 1)27T‘F(S1)|2 /%(52)_2 F(s2)Aa( 2)27r|1—‘($2)|2 (149)

2

—

o0 du —_ _ |ds1| |dsa]
2 20U _
[ erf ey = ff P T X 1.5 g g (099

There was absolute convergence in the triple integral used as an intermediate. Also Xeyp(ug) (51, 59) =

Xexp(uo)(527§1) and f%(sl):% ‘F(Sl)XeXp(uo)(SQ,gl)Qﬂ, “??;‘1)|2 = ]:(52). Hence:

[ terrciaen g = [ rerg= [0 seta as)

0 2 exp(uo)

So with an arbitrary f € K,, F = f, F(s) = F(s)f(s), the assignment f — (ap,BF) exists in
the sense of L? convergence when one approximates f by a sequence f,, in K, such that sﬁ(s) is
in L2(R(s) = %; %), and f — (ap,Br) is linear and isometric. We check that its range is all of
L?(ug, 00; %“) @ L*(ug, oo; %“) For this let us identify the functions au,(u) and By, (u) which will
correspond to F(s) = Xy, (w, s) (ap = exp(up).) On one hand from (147) it must be the case that:

_ |ds] o0
VzeC %(S):% Xao (Za S)Xao (w) S) W = /uo (Acxp(u) (Z)aw(u)+chp(u)(z)ﬁw(u)) du (152)

The left hand side is X, (w, z) which on the other hand is given by the formula 2 fis (A (2)Ag(w) —

Bo(2)By(w)) du. The functions u +— [“g:((j)) }, z € C are certainly dense in L?((ug,c0) — C?; %“) as
we know in particular that the pairs for the p’s such that B,,(p) = 0 give an orthogonal basis. So

we have the identification on (ug, +00):
Qi (u) = 2Aexp(u)(w) ﬂw(u) = 72Bexp(u)(w) (153)

This proves that the range is all of L?((ug,00) — C2;%4). Let us note that in this identifica-
tion the hilbertian evaluator K,,(w,-) is sent to the pair u — 21,54, (u)(Aq(w), By(w)). To
check if all is coherent we compute the hilbertian scalar product (K, (w, ), Kq,(2,-)). We obtain
4 [ Ag(w) Aa(2) + Ba(w)B,(2) % = 2 [ Aa(W) Aa(2) — Ba(@)Ba(2) du = Xegp(uy) (W, 2), which is
indeed K, (w, 2).

Let us return to the consideration of a general F(s) € L2(R(s) = &; %) Under the hypothesis
that s F'(s) is square integrable we have assigned to F' the functions

= S S 7|d8| = S A, S 7|d8‘ a
ar) =2 [ FOAO5 / oy TR, (154a)
= S S 7|d5| = S B, S 7|d5|
Br(w) =2 | s TOBO / s FOEG) G, (154D)

which are square-integrable at +o0o. From (147) there holds, for any ap = exp(uo):

_ |ds| o —— du
Xexp(uo)(za 5)F(s) o = (2Aexp(u)(z)aF(u) + 2Bexp(u)(2)ﬁF(u)) 9 (155)
%(5):% ™ uo
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I'(s)

The function of z on the left side is the orthogonal projection Fp, of F' to the space I/{a\o So,
we deduce by unicity ap(u)ly>y,(u) = ap, (u) and Bp(u)ly>u,(u) = Br, (u). We then obtain
| Fuoll? = f;;(\ap(uﬂ? + |Br(u)]?)% so ap and Bp are square-integrable on (—oo,+00), and as
UK, is dense in L?(0,00;dx) the assignment F' — (ag, Br) is isometric, and also it has a dense
range in L?(R — C?; %“) We can then remove the hypothesis that s F'(s) is square integrable and
define the functions ap and Bz to be the limit in the L? sense of functions o, and S, associated

with F,’s such that ||F' — F,| — 0 and the s F,, are square-integrable. Summing up:

Theorem 15. There are unitary identifications L?(0, co; dz) = L?(R(s) = 3; %)ELQ(R - C?% )
given in the L* sense by the formulas, where R(s) = %

~ i d

= f(s) = /0 flz)z™ dx flz) = /%(S); F(s)z*™! % (156a)
—— |d

alu) = nh_}n;o et F.(s )2Aexp(u)( s) |2j (Fy, —p2 F sF,(s) € L?) (156b)
. ——  _|d

s = Jim, [ Fals) 2B ol (1560

o d
F(s) = Jim | (o) 2enpa(s) + B0) 2By (5)) - (156)

The orthogonal projection of f to K,, corresponds to the replacement of a(u) by a(u)lysq, (u) and
of B(u) by B(u)lysu(u) (uo =log(ap).). The unitary operators f — H(f), F(s) — x(s)F(1 —s),
correspond to («, ) — (o, —fB). For f = X2 one has a(u) = 2@)(3)1u>10g(a0)(u) and B(u) =
—2B;(p\w)(z)1u>log(ao)(u). The self-adjoint operator F(s) — vF(s) (s = %—i—iv} corresponds to the

canonical operator:
0 4 0 u(@“)]
H = du | _ 156e
[—;L o] [u(e% 0 (156e)

which, in L*(R — C?; %“), is essentially self-adjoint when defined on the domain of the functions
of class C' (or even C™) with compact support. The unitary operator ¢! ™ acts on L?(0, c0; dx)

as f(z) — e%Tf(eTx).

For the statement of self-adjointness we start with a and 3 of class C' with compact support,
define F by (156d) and integrate by parts to confirm that vF(s) corresponds to H ([3]). We know
by Hermann Weyl’s theorem that in the limit point case the pairs [3] of class C' with compact
support are a core of self-adjointness (c¢f. [21, §13].) On the other hand we know that multiplication
by v on L?(R(s) = 2, |d7"’;|) with maximal domain is a self-adjoint operator. So the two self-adjoint
operators are the same.

Having discussed the matter from the point of view of the isometric expansion we now turn to
another topic, the topic of the scattering, or rather total reflection against the potential barrier
at +0o0. Another pair of solutions of the first order system (136) (hence also of the second order
differential equations) is known. Let us recall from equations (95a), (95b) that we defined j, =
Va(8a — ¢F Locz<a) = VaHF and —iky, = /a(d, + ¢ Lo<z<a) = VaHe, . Using again (122a) and
(122b) it is checked that j, and k, verify the exact same differential system as A, and By:

0 .
5o = —p(a)jq + i0,kq (157a)
0 o
a%ka = tu(a)ke — 10274 (157b)
Rejecta Mathematica Vol. 2, No. 1, June 2011 93

@This work is published under the Creative Commons Attribution-NonCommercial License. http://creativecommons.org/licenses/by-nc/2.5/legalcode


http://math.rejecta.org
http://creativecommons.org/licenses/by-nc/2.5/legalcode

J. Burnol Scattering, determinants, hyperfunctions in relation to Fg(;)s)
The right Mellin transforms j,(s) and —ilg;(s) are defined as
a
o) =0t = va [ of@ada (1584)
0
~ a
—ikq(s) = az ™ + \/5/ ¢y (2)z™% dx (158b)
0

As ¢} and ¢, are analytic these are meromorphic functions in C with possible?® pole locations at
s =1, 2, ...From the point of view of the Schrodinger equation (138a) and as u = log(a) — —o0,
a — 0, we thus see that, for s = %+i7, v €R, j;(%+w) and ‘]Aa(%fw) are two (linearly independent
for v # 0) solutions, differing from e~"7* and "7 by an exponentially small (in u = log(a)) quantity
(and similarly with —ik, with respect to the Schrédinger equation (135h)). So we have identified
the unique solutions which verify the Jost conditions at —oo.

As P,¢F is square integrable, and also using (85a), we have on the critical line:

T(s)ja(s) + D(1 — 8)ja(1 — ) (159a)
=T(s)ja(s) +T(1 — s)ak% -1 - s)\/a/o oF (x)2* " dx (159Db)
=T(s)ja(s) +T(1 — s)as_% - P(s)\/ﬁ/OOO(HPa¢I)(x)w_S dx (159c¢)

= ()7u(s) + (1= s)a 4 T(oVa [ (6 () — hizvam)e *de  (159)
= F(s)a,%fs +T(1 - s)a‘?*% - F(s)\/&/oa Jo(2vaz)x® dw
FI(VA [ (67 0) — To(2vaD)a do (159)

As Jo(2v/az) — ¢F (x) is square integrable both integrals are simultaneously absolutely convergent

at least for 1 < R(s) < 1 (the & can be improved, but this does not matter). As the boundary

values on the critical line coincide we have an identity of analytic functions. We recognize in
3

[% Jo(2y/ax)x—* dx, which is absolutely convergent for R(s) > 2, the quantity gs(a) (equation

(73)). And from equation (74) we know gs(a) = x(s)a*~' — [} Jo(2y/az)z~* dz. So

1

D(8)ja(s) + T(1 - 8)ja(1 - 5) = T(s)ad ™ + T(s) Va / " ot (@) da (160)

which is indeed 2A4,(s). From the equation (158a) ju(s) = a%(a_s — [y of (x)z~% dz) (valid as
is for R(s) < 1) the function u — j,(s) differs from u + e by an error which is relatively
exponentially smaller (we write s = % + iy, S(y) > —%) So j, is the Jost solution at —oco of the
Schrédinger equation (135g). The identity relating By (s) and kq(s) = ia%(a’s + [y ba (x)a~% dx)
is proven similarly.

Theorem 16. The unique® solution, square integrable at u = 400, of the Schrb’dingeI equation
(135g) (resp. (135h); v #0) is expressed in terms of the functions jo(5 +1v) (resp. —ika(5+1i7))

28the poles do exist.
2%here we make use of the fact that (135g) is in the limit point case at +o0o, because it is proven in the next chapter,
or known from (66a), (66b), that u(a) = 2a = 2¢€", in this study of the H transform.
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L(s)
satisfying at —oo the Jost condition jAa ~us—oo €Y (Tesp. —z'l;; ~us—oo €7Y) as:
1 o~ ~
Au(s) = 5 (D(s)jas) + T(1 = 9)ja(1 = 5)) (161a)
1 ~ ~
Ba(s) = 3 (F(s)ka(s) —T(1 - 8)ka(1 - s)) (161b)
Let us add a time parameter ¢t and consider the wave equation:
0? 0? 9 du
2= etu) =0 162
(57— 5 12— 1) ot (162

Then ®(t,u) = e”tje/x\p(w(% +i7) is a solution which behaves as ¢”7*=%) as u — —oco. This wave is

thus right-moving, it is an incoming wave from u = —oo at t = —oo. For a given frequency ~y there is
a unique, up to multiplicative factor, wave which respects the condition of being at each time square
integrable at u = +o0o. This wave is eMAeXp(u)(% + 47). So the equation (161a) represents the
decomposition in incoming and reflected components. There is in the reflected component a phase
shift 0, = arg x(s), the solution behaving approximatively at u — —oo as C(7) cos(yu+ 16,). This
is an absolute scattering, as there is nothing a priori to compare it too. We will thus declare that
equation (162) has realized x(s) as an (absolute) scattering. Similarly the Schrodinger equation
(135h) realizes —x(s) as an absolute scattering.

We have 24,(3) = 21"(%)5;(%) and j;(%) =1-a2 Iy (b;;(x)x*% dz. So lim,0 A, (3) =T(3) =
V7. On the other hand a-£ A, (1) = —p(a)Aq(3) and p(a) = af: log %. so:
det(1 — H,)

det(1 + Hy,) (163)

1 —~ 1
Au(3) = \/EAG(E) =
We have ad%HXgHQ = —24,(3)%. And Xg = r(%)xg. So:

Theorem 17. The squared-norm of the evaluator f — X¢(f) = [°° @) qz on the Hilbert space
2

a Vz
K, of square integrable functions vanishing on (0,a) and with H transforms again vanishing on
(0,a) is:
o0 1— Hy\? db
Xt =2 det — 164
xg =z [ (de gyt ) g (164

where H, is the restriction of H to L*(0,a;dx).

It will be seen that det(1+ H,) = e~2%" and det(1—H,) = e 39", Having spent a long time
in the general set-up we now turn to determine explicitely what the functions ¢F, ¢, etc. .. are.

7 The K-Bessel function in the theory of the H transform

Let us recall that we may define the A transform on all of L*(R; dz) through the formula %()\) =
£ f(52). This anticommutes with f(z) — f(—z), and H leaves separately invariant L*(0,+o0; dz)
and L2(—o00,0;dz). We defined the groups 7, : f(z) — f(z —a) and 777 = H7,H. We observed
that the two groups are mutually commuting, and that if the leftmost point of the support of f is
at a(f) > 0 then the leftmost point of the support of Tf(f), for any b > 0, more precisely for any
b> —a(H(f)), is still exactly at «(f). From this we obtain the exact description of K:
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Lemma 18. One has K, = 7478 L*(0, +00; dz).

Let now Q be the orthogonal projection L?(R;dx) +— L?(0, +o00;dx). The orthogonal projection
Q. from L?(0,00;dx) to K, is thus exactly TanQT_aTi. It will be easier to work with R, =
QT_aTi7 especially as we are interested in scalar products so we can skip the Tan isometry. First,
we obtain g¢(z) = Ru(fi)(x), for fi(z) = e '*. The part of 7_,(f;) supported in z < 0 will be
sent by Ti to a function supported again in x < 0. We can forget about it and we have thus first
e te~1,o(x), whose H transform is e 7**} exp(—%), which we translate to the left, again we cut
the part in < 0, and we reapply H, this gives gf(z) = e_a(t+%)e_m1x>0(x). In other words we
have used in this computation:

QT,aTi =HQT_HOT_, (a >0) (165)

The orthogonal projection f& := Qqu(f) of fi(z) = e ®1,50(x) to K, is thus 7,7 (¢¢). We can
then compute exactly the Fourier transform of f& as fo(it) = (e, 7a7a (9%)) r2(r) Which is also

(Tf:aT—ae_Tx: gg)LQ(R) = (g‘r7 g?) = e—a(t+%)e—a(7-+$)t+%. Hence:

Lemma 19. The orthogonal projection f& to K, of e ®1,50(z) has its Fourier transform }’?(A)

which is given as:
—~ caliidaesty 1
fo(ir) = emaltra +T>7t — (166)

The Gamma completed right Mellin transform F(s) of f{ is the left Mellin transform of /f?(ZT)

s—1

/ fi@)X¢(x)de = Fi(s) = ea(t+3) / e+ gr (167)
a 0 t+ 7
Let us write W2 for the element of L2(0,+oc;dz) such that TanWg = X% We have Fi*(s) =

(X3, f&) = (W2, g8) = emalt+3) JoS We(z)e ™ da. So the Laplace transform of W¢(x) is exactly:

0o 00 s—1
/ Wo(x)e ™ dr = / 670(T+%)Z—+ dr (168)
0 0 T

Writing H% = e~ (7% dx we recover W (z) as:

oo
Wo(z) = /0 et sl g (169)

Then we obtain [ W(z)W£(z) dz which is nothing else than X,(s, 2):

Theorem 20. The (analytic) reproducing kernel associated with the space of the completed right
Mellin transforms of the elements of K, is

,a(t+l+u+L)t5_luz_l
Xa(s,2) = e ¢ ———— ditdu (170)
[0,4-00)2 t+u

Here is a shortened argument: the analytic reproducing kernel X, (s, z) is the completed right
Mellin transform of XZ(z), so this is [;°(X&,e™)t""1dt. But for R(s) > §, (X% e ) =

L(s)(Qa(z 51554),e7%) = T(s) (2% Lyna, f1) = F{(s) (Qq is the orthogonal projection to K,).
This gives again (170).
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To proceed further, we compute (s + z — l)X (s, z). Using integration by parts, multiplication
by s (resp. z) is converted into —ti (resp. —u=- d ; there are no boundary terms.)

-1, 2—1
Xy (8, 2) // )+ L)e_a(“r%“”'%)tiu dtdu (171a)
[0,-00)2 ot t+u t+u
tsfl z—1
(s, 2) / / (a(u— ) U yematthitut) LU gy (171b)
[0,--00)2 t+u t+u
1 s—1,2—1
(s+2z—1)Xu(s, 2 —a// t—f—l—u ) 7”(t+%+“+%)t7udtdu
[0,+00)2 t+u
:a/ et i)gs— 1dt/ e )y = gy
0 0
—a/ e+ 1) ys—2 dt/ e () =2 gy (171c)
0 0

The K-Bessel function is Ky(z) = § [~ e Tt sl gy = Jo© emmeoshu cosh(su) du. It is an even
function of s. It has, for each x > 0, all its zeros on the imaginary axis, and was used by Pdlya in a
famous work on functions inspired by the Riemann £-function and for which he proved the validity
of the Riemann hypothesis [24, 25]. We have obtained the formula
E(s)E(z) —E(1—s)E(1 —z)

pyrRp—] E(s) = 2v/aK(2a) (172)
To confirm &,(s) = 2¢/aKj (20,) let us define temporarily A(s) = %\/ﬁfooo e’a(H%)(l + %)t"”’1 dt
and —iB(s) = 5 \ffo —a(t+3) (1- %)tsfl dt which are respectively even and odd under s — 1 —s
and are such that E(z) = A(z ) iB(z). We have Vs,z € C —iB(s)A(z) + A(s)(—iB(z)) =
—iBa(8)Aa(2) + Ag(s)(—iB4(z)) and considering separately the even and odd parts in z, we find
that there exists a constant k(a) such that A(s) = k(a).Aq(s) and B(s) = k(a)"'B,(s). Let us check

that limg oo 2( (‘)7) = 1. It is a corollary to lim,_,co Ky(2)/Ky41(x) = 0 which is elementary:

f_oo exp(—x coshu)e” du = O(1) (0 — +00), and for each T > 0, [, exp(—=z coshu)e™ du >
T exp(—z cosh 3T)e? T fOT exp(—zcoshu)e® du < Te°”| and combining we get K,(z) = (1 +
0(1))3 [ exp(—x coshu)e” du. So limsup,_, | Kai(ja)v) < e T for each T > 0. Using (116), we
then conclude k(a) = 1.

Let us examine the equality &,(s) = 2v/aK,(2a) = va [~ exp(—a(t + }))t*"1 dt. It exhibits
&, as the left Mellin transform of v/aexp(—a(t + )), so the dlstrlbutlon E, is determined as the
distribution whose Fourier transform is v/a exp(i a(A— A™1)). Using 7, and 7, this means exactly:

Eo = a1¥ 1,6 = VaHr,Hé(x — a) (173)

We exploit the symmetry K, = K_g, which corresponds to E;()\) = Eva(—/\_l) = —i)\ﬁ\E/a()\), SO
the unexpected identity appears:

Xa(s,2) =

d
E,= —HE, (174)

From (173) we read HE, = \/ataJo(2v/ax) = /aJo(2+y/a(x — a))1zsq(x). Using (174), and recall-
ing equations (96¢) and (96d) we deduce:

w — h2Val@ —a) = Ih(2\/ala — ) (175a)
+ _ —
M — %JO(Q a(z —a)) = %10(2 ala —z)) (175b)
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We knew already from equations (66a), (66b)! Summing up we have proven:
Theorem 21. Let H be the self-reciprocal operator with kernel Jo(2/Ty) on L?(0, 00;dx). Let H, be
the restriction of H to L*(0,a;dx). The solutions to the integral equations ¢ + HyoF = Jo(2v/ax)
and ¢, — Hop, = Jo(2+/ax) are the entire functions:
0
o (x) = Ip(2y/a(a — z)) +%Io(2\/a(afx)) (176a)
0
o (1) = Io(2vala —z)) = 5-To(2Vala — @) (176b)
One has 1 — a = ¢ (a) = & logdet(1 + H,) and 1 +a = ¢ (a) = — 4 logdet(1 — H,), and
det(1+ H,) = eta3a’ (176¢)
det(1 — H,) = e "2 (176d)
The tempered distributions A, = %(1 +H)pT and —i B, = @(71 + H) o, , respectively invariant
and anti-invariant under H, are also given as:
0
Aalw) = L2 (00(0) 4 Losale) ((2V/ale — ) + e o(2v/ale — a))) (176¢)
. Va 0
~iBa(w) = <6a(x) ~ Lsala) (Jo(2V/al@ = a)) = 5-Jo(2+/a(z - a)))) (176f)
Their Fourier transforms are [ €% A, (2) da = @(1 + L) exp(ia(A— 1)) and —i [, € By(z) do =
@(1 — $)exp(ia(A — })). The Gamma completed right Mellin transforms are:
[(s)Aa(s) = Aa(s) = Va(Ky(20) + K-1(2a)) (176g)
—iT(8)Ba(s) = —iBa(s) = Va(Ks(2a) — Ks_1(2a)) (176h)
(oo}
Aa(s) — iBa(s) = Eu(s) = 2v/a K(2a) = va / et )ps =1 gy (1761)
0
They verify the first order system, where pu(a) = ag™(a) + adp™(a) = 2a:
0 1] d 0 ula) Au(s) . 1, [Aqa(s) .
el — _ _ = 1
([—1 0] “da [u(a) 0 |) [Buts)] =772 [Bu(s) (176)
The pair [“25((:))} is the unique solution of the first order system which is square-integrable with
respect to dlog(a) at +o0o. The total reflection against the exponential barriers at log(a) — +oo
of the associated Schridinger equations realizes +F§}(g)s) and —FE}(Q)S) R(s) = % ) as scattering
matrices.

From (163) we have A, (1) = /e 2% To normalize A, according to A,(1) = 1, we would
have to make the replacement A, — 3 e A, and B, — \/Ee’%Ba and the expression of &, in
terms of the K-Bessel function would be less simple. Let us also note that according to (116) we
must have K&;giﬁl) ~o—too g

Regarding the isometric expansion, as given in theorem 15, we apply it to a function F(s) =
Jo° k(z)z™* da such that 4 k() as a distribution on R is in L2. Using the L?-function 1 A,(s),
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which is the Mellin transform of the function C,(z) = 1 fo z) dz, and the Parseval identity we
obtain a(u) =2 [ (—x% (2))Cq(z) dx as an absolutely convergent integral. The square integrable
function C,(x) is explicitely:

Ca(x) = \2/:; z>a (JO 2\/ I - (Z

n@eVa(z — a))) (177)

And under the hypothesis made on x%k(m) we obtain the existence of:
a(u) = Xlim Vak(a) — 2Xk(X)C,(X) + f/ k(z)(1 )J0(2 a(zx —a))dx (178)
—00

Let us observe that k(z) = f;o W) gy with I(y) € L%, s0 |k(z)|? < € and Xk(X)Co(X) = O(X_i).
Hence:

a(u) = Vak(a —|—\f/ 1+§)J0(2 a(r —a))dx (179)

Comparing with Oquatlon (20a) we see that the f(y) defined there is related to a(u) , u = log(a) by
the formula f(y) = 2\[ a(log(a)), a =¥, so |f(y)|*dy = £|a(log(a))[*2da = |a(log(a))[*Ldlog(a).
Similarly we obtain 5(u):

B(u) = fk(a)—f—f/ 1+—J0 (2v/a(z — a)) dx (180)

and comparing with (20b), g(y) = 2—\1/55(10g(a))7 lg(y)|? dy = |B(log(a))|*3dlog(a). So according
to theorem 15 we do have equation (20d):

/ TP + o)) dy = / " k(@) de (181)
0 0

From 15 the assignment k — (o, 3) extends to a unitary identification L?(R(s) = &; ‘ds‘ “D)SLAR —
C?; CZQ—“)7 which has the property H(k) — (a, —3). In order to complete the proof of the isometric
expansion, it remains to check the equation (20c) which expresses k in terms of f and g. According
to 15 we recover k(x) has the inverse Mellin transform of [ (cv(u) 2;1;(5) + B(u) 2(—@@2(3))) %.
Expressing this in terms of f(y) and ¢(y), ¥y = 2a, u = log(a), this means the identity of distri-
butions, where we suppose for simplicity that f(y) and g(y) have compact support in (0, +00) (as
usual, this means having support away from 0 as well as 00.):
@) 5
Y

< \/>f Ay (z %g(y) 2(—iB
dy

—2 / (VF(29) Ay(2) + Vg (2y) 2(~iB, (x)) 2
0 Yy

IST™

(182)

Then imagining that we are integrating against a test function ¢ (x) and using Fubini we obtain:

2 /0 ViF2) Ayf@)

. (183)
= [ 20 (3 =)+ 10 (l2Vila =00 - \[ Vil =) ) do
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=0+ [ (aeViE—m) - [ heyil ) 1) dy
~ e+ [ " (Wi =) - 3o V=) f(y) dy

Proceeding similarly with g(y) one obtains for 2 [~ \/yg(2y)(—i B (x))?y

2x
o) =5 [ (0o =) + [ (Ve =) ) d (185)

Combining (183) and (185) in the formula (182) for k(z) we obtain equation (20c).

(184)

8 The reproducing kernel and differential equations for the ex-

tended spaces
Let L, C L?(0,00;dz) be the Hilbert space of square integrable functions f Which are constant in
(0,a) and with their H-transforms again constant in (0,a). The distribution z-- d dxx = dmx T d f
vanishes in (0,a) and its H transform does too. So s(s — llf(s) is an entire function with trivial
zeros at —N. The Hilbert space of the functions s(s—1)I'(s) f(s) satisfies the axioms of [2]; we prove
everything according to the methods developed in the earlier chapters. Our goal is to determine

th luat d-reprod ki | for th L o~
“for ]}a orian { }t)rl(; gcggroggfph?(:r FHSCStII)gI(IZe\SVItﬁ at most a pole at s = 1 and also f(0)

does not necessarily vanish. The Mellin-Plancherel transform fo (x)z=dx = foa c(fl)z= de +
L% f(z)z™* dz has polar part —z(ff%. Let us write (f,Y1) = —c(f) = Res(f(s),s = 1) = s(s —
l)F(s)f(s)\s:L This defines an element Y; € L,. We define also Y§ = I'(1)Y7 = Y37. Then (f,){) =
s(s—1)I(s)f A( )]s=1. We also define J§ as the vector such that (f, Y§) = s(s — 1)F(s)f(s)|szo
—7(0). One observes (£,H(Y1)) = (H(f),Y1) = s(s — DT(S)H(F)(5)]s=1 = s(s — DT(1 — ) F(1 -
$)|s=1 = —f( ) = (f,Y8) so Y§ = H(Y{). To lighten the notation we sometimes write J; and Yo

instead ){ and ) when no confusion can arise.
We will also cOnsider the vectors XX'€ Ly such that Vf € Ly f(s) = (XX, f).3° The orthogonal

projection of X to K, C L, is Xs. Let us look more closely at this orthogonal projection.
First let N, be the (closed) vector space sum L?(0,a;dx) + HL?*(0,a;dz). Inside N, we have the
codimension two space M, defined as the sum of (Lg<z<q)® N L%(0,a;dx) and of its image under
H. Finally, let R, be the orthogonal complement in N, of M,, which has dimension two. For a
function f to belong to L, it is necessary and sufficient that its orthogonal projection to N, be
perpendicular to the functions in L?(0, a; dx) which are perpendicular to 1o<y<4, and the same for
the H-transform, so this means exactly that its orthogonal projection to N, belongs to R,. So we
have the orthogonal decomposition of L?(0, co; dx) into the sum of the three spaces K,, R, and M,
and L, = K, ® R,. For f € L, to be in K, it is necessary and sufficient that ¢(f) = —(f,Y¢) =0
and the same for ¢(H(f)), so this means that {J¥,V5} is a basis of R,. The function )§ belongs
to N, = L*(0,a;dx) + HL?(0,a;dr) and as such is uniquely written as uy + Hvi. As Y§ € L, we
have constants «, 5 € C such that:

w1 + Hyv1 = —a (186a)
Houy +v1=—p (186]:))
30sometimes written X2*.
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where we recall that P, is the restriction to (0,a) and H, = P,HFP,, D, = Hg . From what was
said previously oo = (V{, ) and 8 = (H(Vf), V§) = (V5. Vf). We have thus:

uy = (1= D)~ (—alocz<a + BHa(lo<z<a)) (186¢)
v = (1 - Da)_1(+aHa(10<w<a) - 510<1‘<a) (186d)

Also the function Y{ may be obtained as the orthogonal projection to L, of _%1O<x<a' Indeed
it follows from what has been seen above that for any element f € L,, (f, V§) = —é foa f(x)dz. As
the function —%10<x<a already belongs to N,, we have

1
—loca<a =ur + Hoy + ug + Hog (187)

where up + Hvz belongs to M,, which means that uy € L?(0,a;dx) verifies [ ug(x)de = 0 and
vg € L*(0,a;dx) verifies [ va(z) dz = 0. But there is unicity so we have exactly

1
up + ug = _510<x<a v +ve =0 (188)
And we deduce: " "
/ ui(z)de = —1 / vi(z)dz =0 (189)
0 0
So a and B are determined as the solutions of the system:

a(10<x<aa (1 - Da)_110<a:<a) - 6(10<w<a> (1 - Da)_lHa10<x<a) =1 (19()&)
a(10<z<a7 (1 - Da)ilHa]-0<:v<a) - 6(10<z<aa (]- - Da>7110<$<a) =0 (190b)

We thus have:

Proposition 22. Let p(a) and g(a) be defined as

p@) = [ (1= D) (Gococa) () o (191a)
0
da) = [ (1= D) Hallococa) o) d (191b)
0
e @ —q@] [GLY) GL)] _[1 0
pla —qla 1,1 1,J0)| _
[—qm) pla) } [(yo,yn <yo,yo>} - [o J (191c)
The evaluators Y§ and Y§ = H(V]) are given as ui + Hvr and Huy + v1 with:
Uy = _(ylayl)(l - Da)71(10<z<a) + (y07y1)(1 - Da)ilHa(10<z<a) (191(1)
v = _(y07y1)(1 - Da)_1(10<x<a) + (y07y0)(1 - Da)_lHa(]-O<ac<a) (1916)

~

We have introduced, for s # 0,1, X as the evaluator f(s) for functions in L,. We shall write
X} =T(s)X) and then Vs = s(s — 1)X*. This is compatible with our previous definitions of }§
and Y§. We note that the orthogonal projection of X to K, is X;. So we may write

X = Xo+ M)VT + ()Y (192)
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We shall also write Va(s,2) = [;° V(2)Ve(x) dr = 2(z — l)F(z)J/JE(z) One has H(Y?) = Y§_,
and Yu(s,2) = Vo(1 — 5,1 — 2) = Vu(2, s). Taking the scalar products with Y{ and Y§ in (192) we

obtain
1
myﬂ(L s) = A(s)a+ u(s)pB (193a)
Yl 1 8) = A8 + (o) (193b)
s(s—1)
Als) = ﬁ(?)’a(la 5) = qVa(1,1 - 35)) (193c)
(s) = S (ol 8) 4 V(11— ) = A1 =) (1934)
Combining with (192), this gives:
Vs = 5(s = D)X + Va(1,8) (V1 — qd5) + Va(1,1 = 5)(—qV} + pd§) (194)
Let To(s) =pla)Va(l,s) — q(a)Va(1,1 —s) (195)

Proposition 23. The (analytic) reproducing kernel Y, (s, z) of the extended space L, is given by
each of the following expressions:

s(s — Dz(z — )Xals,2) + [Vallis) Ya(1,1— )] [p;?i) ‘p%g‘)l)] [%J(’Ci(ll’z)z)} (196a)
(

= s(s — 1)2(z — 1)Xu(s,2) + [Tuls) Tu(1— )] [g(zg ggz;] {Taf‘i(f)z)] (196b)
=s(s—1z(z = D)X,(8,2) + Ta(s)Va(1,2) + Tu(1 — $) Vo (1 — 2) (196¢)

A very important observation, before turning to the determination of the quantities p(a) and
q(a) shall now be made. Let L be the unitary operator:

L(f)(x) = f(z) - © / " ) dy (197)

;. e . -1
It is the operator of multiplication by *

converts functions constant on (0,a) into functions vanishing on (0,a). Let us now consider the

at the level of right Mellin transforms. Obviously it

operator
H =LHL'=L*H=HL> (198)
It is a unitary, self-adjoint, self-reciprocal, scale reversing operator whose kernel is easily computed
to be
N(2yTy) | 1-D@2yvEY) < n’z"y"
k® = Jo(2+/ -2 = -1)— 199

It has L(e™™®) = (1+ %)e‘w —% as self-reciprocal function; the Mellin transform is Sgl I'(1—s) which,
multiplied by s(s — 1) gives (1 — s)?I'(1 — s) which is the Mellin transform of a more convenient
invariant function for H®, the function z(x — 1)e~*. This function is the analog for H® of e~* for
H. Let us now consider the space L(L,). It consists of the square integrable functions vanishing

identically on (0,a) and having H® transforms also identically zero on (0,a). But then the entire
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theory applies to H® exactly as it did for H, up to some minor details in the proofs where the function
Jo was really used like in Lemma 9 or proposition 11. We have for H® versions of all quantities
previously considered for H. To check that the proof of 11 may be adapted, we need to look at

— [Tt dt = a1 (2vE) +2(Jo(2y/E) — 1) +2 [V IZ0W gy — 0, (7). So we may
employ lemma 8 as was done for . Proposition 11 and Theorem 12 thus hold. We must be careful
that the operator L~ is always involved when comparing functions or distributions related to #°
with those related to . For example, one has X = 55 L7 X2 and Vs = s(s — 1) XS = L1 A2,
The two types of Gamma completed Mellin transforms differ: for H we consider I'(s) f(s) while for
H® we consider s2T'(s)g(s). Indeed this is quite the coherent thing to do in order that:

ST(s)j(s) = s(s — LT (s) F(s) (200)

for g = L(f). The bare Mellin transforms of elements of spaces K are not always entire in the
complex plane: they may have a pole at s = 0. After multiplying by s?T'(s) which is the left
Mellin transform of the self-invariant function z(z — 1)e™*, as I'(s) is the left Mellin transform of
e~ ®, we do obtain entire functions, whose trivial zeros are at —1, —2, ... (0 is not a trivial zero
anymore.) From equation (200) we see that the (analytic) reproducing kernel X2 (s, z) exactly
coincides with the function Y,(s,z) whose initial computation has been given in Proposition 23.
Also the Schrodinger equations will realize + (1 3)2 FQ(S;) as scattering matrices, and there will
be an isometric expansion generalizing the de Branges-Rovnyak expansion to the spaces L,. We
will determine exactly the functions AS(s), BS(s), £5(s) and especially the function p®(a). It will
be seen that this is a more complicated function than the simple-minded p(a) = 2a. ..

The key now is to obtain the functions p(a) and ¢(a) defined in Proposition 22, and the function

Ya(1,s). It turns out that their computation also involves the quantities (we recall that J§(z) =

Jo(2V/az)):

a)=1 +/a((1 — D,) " H, - J§) () da (201a)
0
s<a>:/ (1 D)™ JO)() da (201D)
0

In order to compute 7, s, p, ¢ we shall need the already defined functions ¢} (= (1 + H,)~1J§ on
(0,a)), ¢5, (= (1 — Hy)~1JG) as well as the entire functions ¢ and 1, verifying:

Y + HPup =1 (202a)
vy — HPa =1 (202b)

We have r(a) = 143 [;'(—¢7 (z)+ ¢, (z)) dz, and we know explicitely ¢F. But, we shall proceed in
a more general manner. First we recall the differential equations (121a), (121b) which are verified
by ¢ (where 6, = m% + 1)

0 1

a5-da = +0:65 — (pla) + 3)eq (203a)
0 1

a0 = +0:00 + (ula) - 5)é, (203)

We compute ar’(a) = a

—¢i(9)+dala) |
2
simplifying this gives exactly ar’(a) =

)(¢4 (x) — ¢g (2)) + p(a) (¢ (x) + ¢ (2)) da and
s(a). Similarly starting with
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s(a) = 3 [y (64 (2)+0; (x)) do we obtain as'(a) = gp1(a)+3 [§' (x5 (6] (2)+dg (2))+u(a)(~¢f (2)+
¢, ())) dz which gives p(a)r(a) — s(a). So the quantities r and s verify the system:

ar’(a) = p(a)s(a) (204a)

(as)'(a) = p(a)r(a) (204b)

Either solving the system taking into account the behavior as a — 0 or using the explicit formulas

for ¢ we obtain in this specific instance of the study of H, for which p(a) = 2a, that r(a) = Iy(2a)
and s(a) = I1(2a).

From (202a) and (202b) we obtain two types of differential equations, either involving x% or
aZ. From ¢f (z) + [y Jo(2y/Zy)¢F (z) dz = 1, we obtain (1 + HP,)a 2y (z) = —ayp] (a)J§. We
do similarly with %, and deduce:

0
am-tq (@) = —avyg (a)¢; () (205a)
o _ _ _
am-tq (2) = +avy (a)¢, (2) (205b)
Regarding the differential equations with x%, which we shall actually not use, the computation is
done using only the fact that the kernel is a function of zy so w%Jo(Z‘/xy) = ya%JO(Q, /xy). We
only state the result:
0 1. 1, o
(0 308 @) = 305 (@) — atif ()0 () (2062)
0 1 1 _
(14 2 (&) = 30 (@) + vy ()6 () (2061)
Let us now turn to the quantities p(a) and g(a). We have p(a) = [;'(1 — D ) Y1o<zca) () do =
3 Jo (W (@) + g () da. So p'(a) = 5(¢F (a) +45 (@) — 3¢ () f </5+(SU) dz+ 39, (a) [y ¢5 (2) da.
Reorganizing this gives:
+ o4 (x) + - (a) + v, (a) [*+¢F(x)+ ¢ (=
= SO0 [ ) ¢<>2w<>/¢<>2¢<>dx
0
(207)
We remark that from the integral equations defining 1 we have ¢ (a) = 1— [ Jo(2v/az)y] (z) do =
lffoqﬁJr x) dx and 9 ( f1+f0J02\/cﬁ —(x) a:flJrfO x)dx. Soiw“(a+w“():r(a)
and M = s(a). Hence the quantity p(a) verifies:
V' (a) = r(a)* + s(a)? (208)
With exactly the same method one obtains:
q'(a) = 2r(a)s(a) (209)
Let us observe thatq =3 [0 (1 = Hy) ' = (14 Hy)™Y)(1) dz = O(a®) and p(a) = 1 [;((1
H) '+ (1 —-H,) H(1) dm ~a—0 a. SO (pi q) ~a—0 a. Also r(a) ~4—0 1 and s(a) ~g—0 a. The
equation for p(a) can be integrated:
pla) = a(r(a)? — s(a)?) (210)
Indeed this has the correct derivative. Regarding g(a) the situation is different, one has ¢’ = 2rs =
i‘frr so in the special case considered here, and only in that case we have g(a) = 3(r(a)? — 1).
Summing up:
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Proposition 24. The quantities r(a), s(a), p(a) and q(a) verify the differential equations ar’'(a)
p(a)s(a), as'(a)+s(a) = p(a)r(a), p'(a) = r(a)’+s(a)?, ¢'(a) = 2r(a)s(a), p(a) = a(r(a)® —s(a)?).

In the special case of the H transform one has:

|

r(a) = Ip(2a) (211a)
s(a) = I(2a) (211Db)
p(a) = a(I3(20) - I(2a) (2110)
ala) = 5(13(20) 1) (211d)

We now need to determine Y,(1,s) = s(s — 1)I'(s )ﬁ( ). There holds V1 = u; + Hvy =
a10<z<a + 1,5.Hvi. So ﬁ(s) = 171 + f (Hvi)(z)z=°dx. Then f;o(’r'-lvl)(m)m’s dr =
Joo vi(x)gs(z) dz = [ vi(x)gs(x) dz, where the function g, from (73) has been used. Recalling
from (76a), (76b) the analytlc functions us, equal to —(1 — Dg) "1 H,(gs) on (0,a), and vs, equal to

(1 — D,)"tP,(gs) on (0,a), and using (186d) and self-adjointness we obtain

/Oa v1(x)gs(x) doe = —a /Oa ug(x) do — ﬁ/oa vs(x) dz (212)

Let us now recall that we computed ( 83a)) ( ~ + s)us and found it to be on the interval (0, a)
given as —avs(a)(1 — Dg)71(JE) — a(a™ + us ( ))(1 — D,)"'H,(J¢). Integrating and also using
equations (99) and (102) we obtain

VaEq(s) —al™ + (s — 1) /0 " () de = —/aH(Ba)(s)s(a) — VaBa(s)(r(a) — 1) (213)

a2~ — B, (s)r(a) — H(Eq)(s)s(a)

us x)dx = 1 (214)
0 s
We have similarly ((83b)) (z dI—Fl—S) = —\/6@;(/3\)(1 W) (I8~ f’}ﬁE\a)(s)(l—Da)lea(Jg)
so integration gives avs(a) — Sfo vs(x) de = —y/aE,.(s)s(a) — f’;’-{( w)(8)(r(a) — 1) hence
/Oa wa(a)dr = Va E,(s)s(a) + Z‘[(Ea)(s)’r(a) (215)

Combining (214), (215) with (212), and using YV, (1,s) = s(s — I)F(s){/l\a(s):
Fi(s) = va Ey() (A0 POy | gy (o (L) ey 9160

Va(1,8) =+a (Sa(a)(é’a(S)f‘(a) +&a(1 = 5)s(a)) + (1 = s)B(a)(&a(s)s(a) + Ea(1l — S)T(a)))
(216b)

Proposition 25. The functions Y,(1,s) and YV,(1,1 — s) verify

Valls) 1_ o [al) B@] [ s(Eals)r(@) + £l - 9)s(a)
[yaa, - sﬂ = Va [ﬂ(a) a<a>] {u — ) (Eal5)5(a) + Ea(1 — s)r(a»] (217)

Comparing with equation (195) we get: T, (s) = vas(Eq(s)r(a) + E(1 — s)s(a)). So:
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T'(1-—s)

I'(s)

Theorem 26. The analytic reproducing kernel Yo (s, z) associated with the extended spaces Lg is:

Va(s,2) = s(s = 1)z(z — 1) Xa(s,2) + [Tu(s) Tu(1—s)] {ggz; ﬁﬁii] [Taf;(z)z)} (218a)

Ea(8)Ea(z) — Ea(l — 8)E(1 — 2)

Xa(s, z) = poTpe— Ea(s) = 2v/aK4(2a) (218Db)
Tu(s) = Vas (Eu(s)r(a) + Ea(1 — s)s(a)) r(a) = Ip(2a) s(a) = I1(2a) (218c)
o) = - pla) = a(I3(2a) — I3(2a)) (2184)
Bl0) = s ala) = (73 (2a) 1) (2150)

We proceed now to the determination of A%, BS and £ = AS(s) — iBS(s). The function AS(s)

a’
is even under s — 1 — s and BS(s) is odd. We must have:

2Va(1,2) = 2(=iBg (1)) Ay (2) + 2A45(1)(—iBq(2)) (219)
On the other hand from (195) we have YV, (1, z) = aTo(z) + BTa(1 — z). Let us write

2To(2) = Va(z(z — Dr(a)€.(2) + zr(a)€a(2)
+2(z —1)s(a)&a(1 — 2) + zs(a)&u (1 — 2)) (220)
2To(1 — 2) = Va(—z(z — 1)s(a)4(2) — 2(z — Dr(a)€(1 — 2)) (221)

2Va(1,2) = \/5(2(2 — D ((ar — Bs)€a(z) + (as — Br)Eu(1 — 2))
+ za(r Eu(2) + sEa(1 — z))) (222)

Extracting the even part (2),(1,2))" and the odd part (2Y,(1,2))":

(VL 2)* = Va(2(z ~ e~ B)r + ) A+ (= - %)a(r — $)(—iB,) + %a(r T5)A)  (223)

(2Vu(1,2))” = \/&<z(z —D(a+8)(r—s)(—iBy) + (z — %)a(r +s)A, + %a(r — s)(—z’Ba)) (224)

We have (2),(1,2))T = 2(—iB3(1))A%(2) and (2V.(1,2))” = 2A%(1)(—iBS(z)). Let us define
K(a) = (2(=iB2(1)))~! and L(a) = (242(1)) 1. We know that:

—iB3(o) _
Jim —ety =1 (225)
So it must be that
K(a)(a = B)(r +s) = L(a)(a+ B)(r — s) (226)

Also, taking z = 1 in (223) we have 727 = 2\/asa (r€(1) + s&4,(0)) = aT,(1). But referring to
(195) one has T, (1) = pa — ¢8 = 1. So:

K(a)L(a) = (227)
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Then:
1 (a+pB)(r—s a? — 2 r? — 2 1p 1
K(CL)2 _ ( — )( ) — — : s =-= — 5 - (228)
afa) (= B)(r+s)  ala) (a=pB)2(r+s)* pala—pF)>(r+s)
(a—B)(r+s)K(a) = a2 (229)
We conclude:
1 a(r —s) ) a
A =2(z-1DAsg+ (z—2)—————(—iBy) + —— A, 230a
G4t e a9 T Y e (26000
. . 1. a(r+s) o .
. o4 —_ _ _ I U S A I A
iBy = z(z — 1)(—iB,) + (= 2) TR S)Aa + ot ﬂ)( iBg) (230Db)
Let us now observe that a%ﬁ 5 iq and further:
o r—s _p oalr—s? p—q d B
o Bris p_d 7ap7qfadalog(p q) (231a)
a r+s p a(r+s)? o +dq d
1B —s-11d p T a—--log(p +¢) (231b)
o 1 p d 1 .
As(2) = (2(z = 1) + 5 ——) Aa(2) + a—~log(p — ¢)(z — 5)(—iBa(2)) (232a)
2p—q da 2
. 1 p 1
— o — _ N . _
iBo(z) = (2(z— 1)+ 2p+q)( iBa(2)) —l—ad log(p + q)(z 2).Aa(z) (232Db)
Combining we get finally:
Theorem 27. The E function associated with the entire functions s(s — 1)1“(3)]?(5), f €Ly is:
d 1 1
£2(2) = (2 = 1) + 5o log(p(a)’ — (@)*)(z — 5) + sp(@)a(a) ) &u(2)
2 da 2 2
+(1 20 M( ,1)+1 (a)B( ))g (1-2) (282)
2%4a gp(a) —q(a) F T o) TPl )Ca :
where p(a) = a(13(2a) — I}(20)), q(a) = §(13(2a) — 1), afa) = D f(a) = A0 and
Ea(2) = 2¢/aK . (2a).
We shall now obtain by two methods the function u°(a). First, we compute £3(3) = (—% +
ipla+B))E(3) = }l§+38 (3) and invoke a-LE3(3) = —p°(a)ES(L). We thus have:
Theorem 28. The mu function for the chain of spaces Ly, 0 < a < 00 is
d. p—q
© = 71 2 4
4 (0) = ) + o tog 2 (254
d . (2a—1)I2(2a) — 2al?(2a) + 1
=9 —1 2
“F 0% %% (2a 1 1)12(2a) — 2al?(2a) — 1 (235)
=2a—2+o(1) (a = +00) (236)
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The asymptotic behav1or is a Corollary to limg 00 2a5q7t]qp = —2 which itself follows from
P2 — ¢ ~ Io(2a) 16&2 and ( )~ a3 which are easily deduced from the asymptotic expansion
Iy(z) = m(l + &+ 1283:2 +...) ([33}) Of course the o(1) is in fact an O(a™1).
The second method to obtain u°(a) relies on 5‘};%1(;;) ~otoo b ga) ((116)). We have:
E(0) tatlog(p? — ¢%) — 1 1
a — 1 a —_ 2
726,(0) + . + 0(02) (237a)
E(1—o) 1, d p+q, 2
als 79 1-(a—log 229y = 237b
P& —o) T % ) 2T
((aa)) =1- (1a) T log p+q and (234) is confirmed. We can use this method to gather more
information. From (115a) We have, as R(s) = +oo:
— + —ad~ 1
Eo(s) = ab=r(14 0@ o L) (238%)
=5 1 a¢®* (a) — ag®” (a) 1
E° _ s - 238b
2(s) = abme(1 4 0T o2 (2380)
Let us be careful that E,(s) = F(S)E’;(s) while & (s) = SZF(S).EE(S). We obtain:
d
a¢®* (a) = ag”" (a) = ag* (a) — ag™(a) + a—-log(p* — ¢*) - 2 (239a)
a¢™* (a) = ag(a) + adilogp a (239b)
d
a6 (a) = a6 (@) — a_log 21 (239¢)
We recall that (p £ ¢) ~q—0 a. We integrate (239b) and (239¢) using (130a), (130b) and this gives
det(1 + HS) = 229 det(1 + H,) and det(1 — HS) = EX det(1 — H,).
o D—q _ L[ 2
det(1+ H) = ——det(1+ H,) =det(1+ H,) — | (r—s)*da (240a)
a.Jo
1 a
det(1 — H2) = P19 qet(1 — H,) = det(1 — H,) 7/ (r+s)%da (240D)
a a Jo
Theorem 29. Let H® = LH L~! be the self-reciprocal operator on L?(0,00;dx) with kernel:
J(2yTy) 11— Jo(2y/TY) n2xyn
Jo(2v/zy) — 2 + =y (-)'————= (241a)
VY Ty ng (n+1)2
and let H? be the restriction to L*(0,a;dx). Then:
1 I2(2a) — 1
det(1 + HS) = eto2%” 5/ (Io(2a) — I1(2a))? da = eT* 27" (15(2a) — I (2a) — %)
(241Db)
1 : 13(2a) — 1
det(1— HY) = ez’ / (Io(2a) + I1(2a))* da = e 20’ (I3(2a) — I} (2a) + %)
a Jo a
(241c)
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From theorem 26 ||y%\|2 = 6\\?(1 12+ 2(a + B)To(3)? and Tu(3) = Lv/a(r + s)Ea(3). Also,
(a+ B)(r +s5)? = %(r + 5)2. Furthermore ||)71H2 = —F(l)2HX<f||2 = 1l6||X<f||2 and HX;HQ =

7THX1H2- And also from (163) &(3) = V7 dCt(l Ha) and from theorem 17 one has ||X“||2 =

det(1+Hg) )
2
2[> (det hgb) 9 and the analog holds for X$%. Let us observe that X$¢ = —LX so [|X5?| =
2 2 2 2
X3l So
2

oo 1—H\? db 0 1—H\?dv _ p+¢ 1— H,\?
X9 =2 b) —=2 / — <) (242
I /a <det1+Hg> b o\t ) prte o Aty (2)
Theorem 30. Let L, be the Hilbert space of square integrable functions on f € L?(0,00;dx) such
that both f and H(f) = [~ Jo(2y/Zy) f(y) dy are constant on (0,a). Then the squared norm of the

linear form f — f f) dx is given by either one of the following two expressions:
2
5 /°° (2b + 1)I2(2b) — 2bI(2b) — 1\~ e~* b (2430)
o \(2b—1)I2(2b) — 2bI3(2b) + 1 b
oo ,—4b 2
_ 2/ " o Sa(Ig(Qa) + 11(22(1)) o—da (243b)
o b (2a — 1)15(2a) — 2al7(2a) + 1

The squared norm of the restriction of the linear form to the subspace K, of functions vanishing

n (0,a) and with H(f) also vanishing on (0,a) is 2 [ e;fb db.

One may express the wish to verify explicitely from equations (230a) and (230b), or in the
equivalent form

45 = (= 3+ D) A + e oo - )~ (iBu) (204)
() = (2 = 3 + 1o ) (Bl + (g oo )~ Aals)  (204)
the differential system:
A3 (2) = (@) A=)~ (2 — ) (B (2) (2450)
0 (iB3(2) = () (i) — (=~ D)A) (2150)

and also to verify explicitely the reproducing kernel formula

Ea(s)&5(z) — €51 — s)E5(1 — 2)
s+z-—1

Vu(s,2) = (246)
The interested reader will see that the algebra has a tendency to become slightly involved if one
does not benefit from the following preliminary observations using p' = r2+ 52, ¢/ = 2rs, ar’ = pr,
as’' = pr — s, p = a(r? — s?) one first establishes aq” + ¢’ = 2up’, ap” + p' — p = 2uq’. Using this
one checks easily:

I / ' 2 1 U —1p +d¢
(p ) (2rgdy L p  2-1ptg (247a)
p+gq p+q a*p+q a p+gq
P=d\'  (P-d\'_ 1 p 2u+ip—¢
(P S (ftYa s .
pP—q pP—q ap—q a pP—q
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Also the identity
2

p>  pHqd p—d
2 _ 2 @ a

P —q p+q p—q
is useful. The verifications may then be done.

= pa (247¢)

9 Hyperfunctions in the study of the H transform

In this final section we return to the equation (31):

— l
o0 = St

f ( ) (248)

Let us recall that f € L?(0,00;dx) and 1 : L2(O,oo;dm) — L?(0,00;dx) is the isometry which
corresponds to F(w) — F(w?), where F(w) = Y00 jcow™, f(z) = Y00 g cnPo(z)e™®, Py(z) =
L%O)(Qx). Let g = ¢(f). Using A = it, in the L? sense:

L [PAdiz A
oa) = 5= [ g FEg e (249)

It is natural to consider separately A > 0 and A < 0. So let us define:

L% ArizA—3%. w
G+(x)—%/oo o f( 5 )e dA (250a)
G_(z) = ——/ A“ A) AT g\ (250D)

We observe that G4 is in the Hardy space of &(x) > 0 and G_ is in the Hardy space of &(z) < 0.
Their boundary values must coincide on (—00,0) as g € L?(0,+o0;dx). So we have a single
analytic function G(z) on C\ [0, +00) with G = G4 for ¥(z) > 0 and G = G_ for I(x) < 0. Then
g =v(f) = G4+ — G_ is computed as

g(x) = G(x +1i0) — G(z — i0) (251)

In other words ¢ is most naturally seen as a hyperfunction [23], as a difference of boundary values
of analytic functions. We shall now compute it explicitely, and also we will show later that this
observation extends to the distributions A,(x), —iB,(z), E,(x) which are associated with the study
of the H transform. The point of course is that the corresponding functions G will for them have
a simple natural expression.

We have, for $(z) > 0:

Glz) = % / h A;jﬂ%ﬁ)emz d\ (252a)
G(z) = < 27 (A3) £ () dac) et d) (252b)
Letpz%()\ % A= u—i-m, N du,w1thf0r0<)\<oo —00 < p < 0.
G(z) = L /00 A - (/OO e f(2) dac) ety (252¢)
21 J_ o A1\
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Foru—>+oo,)\=2u+ﬁ+...,andf0ru—>—oo,)\z—ﬁ—i— , and >\+z 2#

the inner integral is in the L? sense. We shall now suppose that f and farein L' (solim, o0 f(x) =
0) and write [ e " f(x)dx = [;° e” 1 "e” f(z) da = Z];(El + w{H Jo e e (f(z) + f'(x)) da

1 00 )\ etidz 0 ) etide o /
60 =5 (10 [ it [ e ([T e s ranar) a)
(252d)

In this manner, with f € L, f' € L', 3(z) > 0, we have an absolutely convergent double integral.

1 [eS) A eJri)\z o) [e%e) A efi;wH»i)\z ,
6= (10) [ P s [T ([T 2 ) )+ )

(252¢)
Observing 5= [* /\f\m j;rlz dp = 5= [5° 355 W:_le‘”)‘z d\ = 2 ¥ 55 et d), we then suppose
R(z) <0, S(z) >0 (or S(z) > 0) so that we may rotate the contour to A = —it, 0 < ¢t < oo. This

procedure gives thus:

as u — —oo. So far

1 A e+i)\z 1 00 Ltz
— —dpy = — dt 252f
2 /Oo/\+z'iu—|—1 F=omi )y 1+t (252f)
Also: T
e —ipxr+irz 0o - )
1 A e 1 Lefzé()\f%)Jrz/\z d)\ (252g)

- R P
o) nti pntl M omi )y a—i
We rotate the contour to A € 7[0, —o0), which is licit as > 0 and, for R(z) < 0, z > 0, we obtain:

1 oo ezt—%(t+%)

— —dt 252h

Going back this allows to write (252¢), for R(z) < 0, I(z) > 0 as:

ert o0 eAt—3(t+7)
G(z) = 5 (f( )/ 1+tdt+/0 (/0 mdt) (f(:c)—f—f’(x))dm) (252i)

and finally, after integrating by parts:

6 =g [ ([ 30+ perieha) s ay (252)

211 2

This last expression (still temporarily under the hypothesis f, f' € L') is certainly a priori absolutely
convergent for R(z) < 0 and gives G(z) in this half-plane.
We are led to the study of:

1 *1 1 1 1
_ N1 N zt—sy(t+5) dt 2
ae9) = g [ 51+ et (253)

We still temporarily assume R(z) < 0. We even suppose z < 0 and make a change of variable:

2y) <1/ / e 3V(y=22)(uty du+ e*%vy(y*z)(“*%)l du) (253b)
271'2 —222 U

a(ey) = —— (/2 l/me—émww%)dwl/me—émwwaldv (253¢)
’ 2mi y—22 2 ) 2 Jo v
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o) = g (5257 KaVilo—220) + Kol /ol =220 ) (2534)

y— 2z
For any z € C\ [0, +00) and any y > 0 the integrals in (253c) converge absolutely and define an
analytic function of z. Furthermore the K Bessel functions decrease exponentially as y — 400
n (253d). For fixed z, a(z,y) is certainly a square-integrable function of y (also at the origin),
locally uniformly in z so the equation (252j) defines G as an analytic function on the entire domain
C\ [0,+00). Then by an approximation argument (252j) applies to any f € L?(0,c0;dz) and any
z € C\[0,400).

We now study the boundary values a(z+1i0,y), a(x—1i0,y), x,y > 0. We could use the expression
of the K Bessel functions in terms of the Hankel functions H®) and H®, go to the boundary, and
then recover the Bessel functions Jy and J;. But we shall proceed in a more direct manner. Let us
first examine

d(z,y) = il ezt*%y(w%) 1
¥ 2mi 2 t
11 1 1 [ dt (254a)
- - - e*%\/y(y*%)(w%)f du — —— e~ Vuly—22)t
212 )y u 21 Jy 2 1
— y(y—22)t 1—1 - - y(y—22)t 1 1
2m eV R (=~ (254b)

—1 B
1 e—\/y(y—ZZ) - e~ Vu—22)t =2 4 N 1 oy L
271 y(y — 22;) 211 1 Vit

We now look at the (distributional) boundary values z — x with z = x + i€, e — 0" or z =z — ie
and € — 07. We shall take > 0. Here the singularities at y = 2z and at y = 0 are integrable and
we need only take the limit in the naive sense. We distinguish y > 2z from 0 < y < 2z. In the
former case, nothing happens:

1 oo
d(x +10,y) = d(z —i0,y) = %/1 e~ Vuly=20)t

%) dt (2540)

— 255a
o (255a)

In the latter case:

y(2z—y) 0 +'L y(2z—y) t 2 dt 1 1
da+i0.y) = = —h b [T L Ly,
™ y(2x —y) 2mi Vi2 t

(255b)
1 —i/y(2z—y) _ [° —i\/y(Rz—y)t 2 dt 1 o0 ) 1 1
d(xz —1i0,y) = = c he +— A ] (——
2m y(2z —y) 27 Jq 2 _1 t
(255c¢)
So d(z +1i0,y) — d(x — 10, y) is supported in (0,2z) and has values there
Tcosy/y(2z —y 20 —y)t)t 2dt 1 [ 1 1
o ° = " sy e = y)t) + f/ sin(v/y(2z — y) t)( — =) dt
y(2z —y) T )1 VIZ—1 t
(255d)

We used this method to have a clear control not only of the pointwise behavior but also of the limit
as a distribution. There is no necessity now to keep working with absolutely convergent integrals
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and we have the simple result, using the very classical Mehler formula:3!

sinly ﬁ(L} R ST R YV Teraarn)

d(l‘ + ZO? y) - d(lﬁ —10 y) - 1O<y<2z(y)ﬂ_ /
1
(256)

Let us now consider the behavior of

11 & at—1 —lw/ 2)(u
e(z,y):Q—mi/o et 2772\/ —22 2/ e (257)

We make the simple observation that e(z,y) = 3; 9 d(z,y). So we shall have (as is confirmed by a
more detailed examination):

e(z+10,y) —e(x —i0,y) = %% Lo<y<2:(y)Jo(Vy(2x — y))
= boalt) — 5 1o<y<2x<y>\/E AN ey

Combining all those elements we obtain that the function k(x) = ¢(f)(z) is given as:

2z
k(x) = f(2x) +;/O Jo(Wy(2x —y dy—f/ 1/ Y Jl(\/ 2z —y))f(y)dy (259)

Some pointwise regularity of f at x is necessary to fully justify the formula; in order to check if
continuity of f at 2z is enough we can not avoid examining e(z,y) more closely as z — .

(2,9 / o2yt tdt tdt
y— 22 2mi V12

(258)

260)
—Vy(y—2z) / (
- + / Vi LoV Ly,
27 y—2z —22271'1 2 -1
The integral term on the right causes no problem at all. And writing %(;:h) = yf% +

e~ Vy(y—22)_1 1

T , again the term on the right has no problem, so there only remains =2 and of
course, this is very well-known, the difference between +i0 and —i0 gives the Poisson kernel, so for
non-tangential convergence, continuity of f at 2x is enough. Of course this discussion was quite
superfluous if we wanted to understand k as an L? function, here we have the information that non
tangential boundary value of G(z + i0) — G(z — i0) does give pointwise the formula (259) if f is
continuous at y = 2x. We can also rewrite (259) as:

d 1 2x
) = (14 )5 [ (Vo= 0) ) dy (261)
dz’ 2 0
This is exactly one half of equation (20c), where k was obtained from ( f, g) as Y(f) +w- w( ).
Let us observe that w = :\\—;z verifies, as an operator, (% +1)-w (dx +1) = &£ -1

So the isometry corresponding to g(w) +— w G(w?), which is the composite w - 1), sends g to

%)% fOQI Jo(v/y(2z — y))f(y) dy. This is indeed the second half of equation (20c).
The formulas (20a) and (20b) may be established in an exactly analogous manner (taking k

with compact support to simplify the discussion). But this would be a repetition of the arguments

3lwe are mainly interested in the boundary value as a distribution and we skip the discussion of the pointwise

behavior at the borders y = 0 and y = 2.
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we just went through, so rather I will conclude the paper with a method allowing to go directly
from A,(s), —iBa(s), £a(s) to the distributions A,(z), —iB,(x), Eq(z), and this will show that
they are in a natural manner (differences of) boundary values of an analytic function.

From the expression &, (s) = (S)E\( ) = 2yaK(2a) = a [T e t+l)t5’1 dt, we shall recover
E, o(s) as a right Mellin transform with the help of the Hankel formula I'(s)~! = [, e’v™* dv, where C
is a contour coming from —oo along the lower edge of the cut along (—oo, 0] turning counterclockwise
around the origin and going back to —oo along or slightly above the upper edge of the cut. Let us
write the Hankel formula as

o1 1

v dv (> 0) (262)

So we have:

E;(s) = \/aL </ eys dv) ety gt (263)
0 C

211

Let us suppose R(s) > 1. Then the contour C can be deformed into the contour C. coming from
—i00 to —ie, then turning counterclockwise from e "z € to e'2 ¢, then going to +ico. Also we impose
0 < € < a. The integrals may then be permuted:

—~ 1 o
Eo(s) = Va=— < / elvea(tty) dt) v do (264)
Ce 0

21

and using e(z,y) from (257) this gives:
R(s)>1 = Eu(s)=+va [ 2e(v,2a)v*dv (265)
Ce

We have previously studied e(z,y), which is also expressed as in (260). We see on this basis and
simple estimates that we may deform C. into a contour C,; going from +oo to a+n along the lower
border, turning clockwise around a from a + 1 — i0 to a + 1 + 70, then going from a + 7 to +00 on

the upper border (n < 1). We will have in particular from (260) a term 2~ [ a:—:-%o 52—~ dv which

is a—®. The final result is obtained:

R(s)>1 = Bu(s) =a <a5 - /aoo fajl(z\/m)wdx) (266)

This identifies E;(s) as the right Mellin transform of the distribution

Eo(z) = Va <5a(m) + 1r>a(m)%Jo(2 alz — a))> - ﬁa% ( esa()Jo (2 a(z — a))) (267)

This proof reveals that the distribution E,(x) is expressed in a natural manner as the difference of
boundary values /a(2e(x + 40, 2a) — 2e(z — i0, 2a)), with

1 [ 1
Vaze(z,2a) = va eAtaltty) gy = Va2 a - K1(2/a(a— ) (268)
; =

The formulas (176e) and (176f) are recovered in the same manner.

Rejecta Mathematica Vol. 2, No. 1, June 2011 114

@This work is published under the Creative Commons Attribution-NonCommercial License. http://creativecommons.org/licenses/by-nc/2.5/legalcode


http://math.rejecta.org
http://creativecommons.org/licenses/by-nc/2.5/legalcode

J. Burnol Scattering, determinants, hyperfunctions in relation to Fg(;)s)

Theorem 31. The distribution A,(x) = ‘[(1 +H) (P Locacoo), O (7) + fo Jo(2\/Ty) T (y) dy =
Jo(2v/azx), is the difference of boundary values v/a(a(x + 40, 2a) — a(x — 40, 2a)), with:

Vaa(z,2a) = \f / 1 eZt alt+3) gy
22( K12\/ ala — 2)) + Ko(2v/a a—z>
T

The distribution —iBy(x) = @(—1 + M)(9; Locacoo)s Gq (@) — [o Jo(2y/ZY) b5 (y) dy = Jo(2V/ax),
is the difference of boundary values v/a(—ib(x + 0, 2a) — (—ib(x — 40, Qa))), wzth:

(269)

\/&(fib(z,Za)) f }(1 _ 1)6zt—a(t+%) dt
27T 0 2

1 t
:\/52m<\/ZK1(2 a(a—z)>—Ko(2m)>

10 Appendix: a remark on the resolvent of the Dirichlet kernel

(270)

In this paper we have studied a special transform on the positive half-line with a kernel of a
multiplicative type k(xy), following the method summarized in [5, 6]. We have associated to the
kernel the investigation of its Fredholm determinants on finite intervals (0, a), and have related them
with first and second order differential equations leading to problems of spectral and scattering
theory. There is a vast literature on kernels of the additive type k(x — y), and on the related
Fredholm determinants on finite intervals. The Dirichlet kernel on L?(—s, s; dx):

sin(z — y)
K (z,y) = ———= 271
(o) = (211)
has been the subject of many works (only a few references will be mentioned here.) The Fredholm
determinant det(1 — Kj), as a function of s (or more generally as a function of the endpoints of
finitely many intervals), has many properties, and is related to the study of random matrices [22].
The Fredholm determinants of the even and odd parts

sin(z — y) n sin(z + y)

+ _
Bmy) = m(w—y) — w(z+y)

(272)

on L%(0, s; dz) have been studied by Dyson [16]. He used the second derivatives of their logarithms
to construct potentials for Schrodinger equations on the half-line, and studied their asymptotics
with the tools of scattering theory. Jimbo, Miwa, Mori, and Sato [17] related det(1 — K) to a
Painlevé equation. Widom [34] obtained the leading asymptotics using the Krein continuous analog
of orthogonal polynomials. Deift, Its, and Zhou [11] justified the Dyson asymptotic expansions
using tools developed for Riemann-Hilbert problems. Tracy and Widom [32] established partial
differential equations for the Fredholm determinants of integral operators arising in the study of
the scaling limit of the distribution functions of eigenvalues of random matrices. We refer the reader
to the cited references and to [12] for recent results and we apologize for not providing any more
detailed information here.

We have, in the present paper, been talking a lot of scattering and determinants and one might
wonder if this is not a re-wording of known things. In fact, our work is with the multiplicative
kernels k(zy), and (direct) reduction to additive kernels would lead to (somewhat strange) g(t+ u)
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kernels on semi-infinite intervals (—oo, log(a)]. So we are indeed doing something different; one may
also point out that the entire functions arising in the present study are not of finite exponential
type; and the scattering matrices do not at all tend to 1 as the frequency goes to infinity. In the
case of the cosine and sine kernels the flow of information will presumably go from the additive to
the multiplicative, as the additive situation is more flexible, and has stimulated the development of
powerful tools, with relation to Painlevé equations, Riemann-Hilbert problems, Integrable systems
[11].

Nevertheless, one may ask if the framework of reproducing kernels in Hilbert spaces of entire
functions also may be used in the additive situation. This is the case indeed and it is very much
connected to the method of Krein in inverse scattering theory, and his continuous analog of or-
thogonal polynomials (used by Widom in the context of the Dirichlet kernel in [34].) The Gaudin
identities for convolution kernels ([22, App. A16]) play a role very analogous to the identities in the
present paper (132a), (132b) involved in the study of multiplicative kernels. Widom in his proof [34]
of the main term of the asymptotics as s — 400 studied the Krein functions associated with the
complement of the interval (—1,+1) and he mentioned the interest of extremal properties. In this
appendix, I shall point out that the resolvent of the Dirichlet kernel indeed does have an extremal
property: it coincides exactly (up to complex conjugation in one variable) with the reproducing
kernel of a certain (interesting) Hilbert space of entire functions. This could be a new observation,
obviously closely related to the method of Widom [34].

The space mPW, we shall use is, as a set, the Paley-Wiener space PW;, but the norm is
different:

mPW, = {f(z) entire of exponential type at most s with || f|| < oo}

||f2=/R\( IF(£)[2 dt (273)

)

Let X;(z,w) be the element of mPW; which is the evaluator at z: Vf € mPW; (f, Xs(z,-)) = f(2).
We shall compare X;(z, w) with the resolvent of the kernel

Dy(x,y) = Sw (274)

on L?(—1,1;dx).
Let f € mPWs. It belongs to PW so

/ 1) mgj:z te__:(t_Z) dt = /R f(t)w dt (275)

On the other hand:
< / / ) Xy(z,t)dt (276)
As f(z) (f +f1 ) t) Xs(z,t)dt = (f +f1 ) (Z,t) dt one has X,(z,t) = X,(Z,1)

for t € ]R. We have for y; and yo real

Xs(yl,yz)=/ Xos(y1, 1) Xs(y2, 1) dt:/ Xs(y1,t) Xs(y2, t) dt = Xs(yo,y1)  (277)
R\(~1,1) R\(-1,1)

so more generally X(z71, 22) = Xs(Z2, 21)-
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We apply (276) to f(z) = blﬁr(fz(iz_;ﬁ/)) for some y € C:
sin(s(z — y)) _ / sin(s(t — y))Xs(E, b dt (278)
m(z —y) R\(-1,1) 7(t—y)
We apply (275) to f(y) = Xs(Z,y) for some z € C:
_ _ .sin(s(t—y))
X = [ Xs(Z,t)——=dt 279
()= [ Xz (219)
Combining we obtain:
o simGs(z—y) / _ sin(s(t — y))
X(Zy) — mRE 7Y [ x z0) TR Y gy 280
=) m(z —y) -1 &) m(t —y) (250)
Restricting to y € (—1,1), z =z € (—1, 1), this says exactly:
Xs(z,y) = Rs(2,y) (281)

where Rg(x,y) is the kernel of the resolvent: 1+ Ry = (1 — D,)~!, Ry — Dy = RyD;. The resolvent
Rs(x,y) is entire in (x,y) and the general formula is thus:

Vz,we C Rs(z,w) = X,(Z,w) . (282)

References

[1] L. de Branges, Self-reciprocal functions, J. Math. Anal. Appl. 9 (1964) 433-457.
. de Branges, Hilbert spaces of entire functions, Prentice Hall Inc., Englewoo iffs, .
2] L.de B Hilb ) ) P ice Hall I Engl d Cliffs, 1968

[3] J.-F. Burnol, Sur certains espaces de Hilbert de fonctions entieres, liés a la transformation
de Fourier et aux fonctions L de Dirichlet et de Riemann, C. R. Acad. Sci. Paris, Ser. I 333
(2001), 201-206.

[4] J.-F. Burnol, On Fourier and Zeta (’s), talk at University of Nice (18 Dec. 2001), Forum
Mathematicum 16 (2004), 789-840.

[5] J.-F. Burnol, Sur les “espaces de Sonine” associés par de Branges a la transformation de
Fourier, C. R. Acad. Sci. Paris, Ser. I 335 (2002), 689-692.

[6] J.-F. Burnol, Des équations de Dirac et de Schrédinger pour la transformation de Fourier, C.
R. Acad. Sci. Paris, Ser. I 336 (2003), 919-924.

[7] J.-F. Burnol, Two complete and minimal systems associated with the zeros of the Riemann
zeta function, Jour. Th. Nb. Bord. 16 (2004).

[8] J.-F. Burnol, Entrelacement de co-Poisson, Ann. Inst. Fourier, 57 no. 2 (2007), 525-602.

[9] J.-F. Burnol, Spacetime causality in the study of the Hankel transform, Ann. Henri Poincaré

7 (2006), 1013-1034.
[10] E. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book
Company, Inc., New York-Toronto-London, 1955.

[11] P. Deift, A. Its, X. Zhou, A Riemann-Hilbert approach to asymptotic problems arising in the
theory of random matrix models, and also in the theory of integrable statistical mechanics,
Ann. Math. 146 (1997), 149-235.

[12] P. Deift, A. Its, I. Krasovsky, X. Zhou, The Widom-Dyson constant for the gap probability in
random matrix theory, arXiv:math.FA /0601535

Rejecta Mathematica Vol. 2, No. 1, June 2011 117

@This work is published under the Creative Commons Attribution-NonCommercial License. http://creativecommons.org/licenses/by-nc/2.5/legalcode


http://math.rejecta.org
http://creativecommons.org/licenses/by-nc/2.5/legalcode

J. Burnol

Scattering, determinants, hyperfunctions in relation to

T'(1-—s)

T'(s)

[13]

[14]

R. J. Duffin, H. F. Weinberger, Dualizing the Poisson summation formula, Proc. Natl. Acad.
Sci. USA 88 (1991), 7348-7350.

H. Dym, An introduction to de Branges spaces of entire functions with applications to differ-
ential equations of the Sturm-Liouville type, Advances in Math. 5 (1971), 395-471.

[15] H. Dym, H.P. McKean, Gaussian processes, function theory, and the inverse spectral problem,
Probability and Mathematical Statistics, Vol. 31. Academic Press, New York-London, 1976.

[16] F. Dyson, Fredholm determinants and inverse scattering problems, Comm. Math. Phys. 47
(1976), 171-183

[17] M. Jimbo, T. Miwa, Y. Mori, M. Sato, Density matrix of an impenetrable Bose gas and the
fifth Painlevé transcendent, Physica 1D (1980), 80-158.

[18] J. C. Lagarias, Hilbert spaces of entire functions and Dirichlet L-functions, in: Frontiers in
Number Theory, Physics and Geometry: On Random Matrices, Zeta Functions and Dynamical
Systems (P. E. Cartier, B. Julia, P. Moussa and P. van Hove, Eds.), Springer-Verlag: Berlin
2006, to appear.

[19] J. C. Lagarias, Zero spacing distributions for differenced L-functions, Acta Arithmetica 120
(2005), No. 2, 159-184.

[20] P. Lax, Functional Analysis, Wiley, 2002.

[21] B. M. Levitan, I. S. Sargsjan, Introduction to Spectral Theory, Transl. of Math. Monographs
39, AMS 1975.

[22] M. L. Mehta, Random Matrices, Academic Press, 2nd ed., 1991.

[23] M. Morimoto, An introduction to Sato’s Hyperfunctions, Transl. of Math. Monographs 129,
AMS 1993.

[24] G. Pélya, Bemerkung iiber die Integraldarstellung der Riemannschen &-Funktion, Acta Math.
48 (1926), 305-317.

[25] G. Pdlya, Uber trigonometrische Integralen mit nur reellen Nullstellen, J. Reine u. Angew.
Math. 158 (1927), 6-18.

[26] M. Reed, B. Simon, Methods of modern mathematical physics. II. Fourier analysis, self-
adjointness, Academic Press, New York-London, 1975.

[27] C. Remling, Schrodinger operators and de Branges spaces, J. Funct. Anal. 196 (2002), 323-394.

[28] V. Rovnyak, Self-reciprocal functions, Duke Math. J. 33 (1966) 363-378.

[29] J. Rovnyak, V. Rovnyak, Self-reciprocal functions for the Hankel transformation of integer
order, Duke Math. J. 34 (1967) 771-785.

[30] J. Rovnyak, V. Rovnyak, Sonine spaces of entire functions, J. Math. Anal. Appl. 27 (1969)
68-100.

[31] G. Szegd, Orthogonal Polynomials, AMS Colloquium Publications 23, 1939.

[32] C. Tracy, H. Widom, Fredholm determinants, differential equations, and matrix models, Com-
mun. Math. Phys. 163 (1994), 33-72.

[33] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University
Press, 1944.

[34] H. Widom, The asymptotics of a continuous analogue of orthogonal polynomials, J. Approx.
Theory 77 (1994), 51-64

Rejecta Mathematica Vol. 2, No. 1, June 2011 118

@This work is published under the Creative Commons Attribution-NonCommercial License. http://creativecommons.org/licenses/by-nc/2.5/legalcode


http://math.rejecta.org
http://creativecommons.org/licenses/by-nc/2.5/legalcode

